Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:
|
|
- Ulla Falk
- för 9 år sedan
- Visningar:
Transkript
1 Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden, µ 1 µ Populationsproportionen, p. 4. Skillnaden mellan två populationsproportioner, p 1 p 2. Exempel 1. Populationsmedelvärdet, µ Exemplet som vi ska använda för att visa hur man kan ta fram ett konfidensintervall och utföra hypotestest för µ kommer från MS boken (övning 8.86 sidan 432). Datafilen som vi läser in innehåller pris på olika typer av tonfisk. data ex886 ; input vatten olja ; datalines ; ; proc print data = ex886 ; 1
2 Genom att använda proc means-kommandot och ange "mean", "std", "alpha=0.05" och "clm" låter vi SAS räkna ut medelvärdet, standardavvikelsen och ett 95% konfidensintervall för alla variabler i datafilen. Om vi bara är intresserade av en av variablerna lägger vi till, i en ny rad, "var" och namnet på variabeln. proc means data = ex886 mean std alpha =0. 05 clm ; var vatten ; Observera att proc means räknar ut ett konfidensintervall för litet urval (Small sample Confidence interval) enligt formeln ȳ ± t α/2 ( s n ), df = n 1 Vi kan sen använda proc ttest till att testa: H 0 : µ = 1 H a : µ < 1 proc ttest data = ex886 h0 =1 alpha =0. 05 sides = L; var vatten ; Vi anger "sides=l", där L står för lower, för att låta SAS utföra ensidigt test med H a :µ < 1. Dubbelsidigt test får man genom att välja "sides=2" och testet med mothypotes H a :µ > 1 genom att sätta "sides=u". Vi får utskriften The TTEST Procedure Variable : vatten N Mean Std Dev Std Err Minimum Maximum Mean 95% CL Mean Std Dev 95% CL Std Dev Infty DF t Value Pr < t Utskriften ger oss olika mått. Intressant för hypotestestning för µ är det som står i raden längst ner. Teststatistikan är t = ȳ µ 0 s/ = 0.97 och jämförelse med t-fördelningen med n df=13 ger p-värdet Vad innebär p-värdet? Kan man förkasta H 0? 2
3 2. Skillnaden mellan två populationsmedelvärden, µ 1 µ 2 Vi fortsätter med samma exempel. Vi tar datafilen ex886 och sätter i samma kolumn värden för både tonfisk i vatten och tonfisk i olja. För att hålla reda på de olika kategorierna lägger vi till en ny variabel, grupper. data Tonfisk ; set ex886 ; if vatten ne. then do; pris = vatten ; grupp =1; output ; end ; if olja ne. then do; pris = olja ; grupp =2; output ; end ; keep pris grupp ; Nu kan vi använda proc ttest till att låta SAS beräkna ett konfidensintervall för µ 1 µ 2 och utföra hypotestestet H 0 : µ 1 = µ 2 H a : µ 1 µ 2 proc ttest data = tonfisk alpha =0. 1 sides =2; var pris ; class grupp ; Utskriften ger oss många olika mått. Det som är intressant för hypotestestning av µ 1 µ 2 har vi tagit fram i tabellen nedan The TTEST Procedure grupp Method Mean 90% CL Mean Std Dev Diff (1-2) Pooled Method Variances DF t Value Pr > t Pooled Equal Observera att proc ttest-kommandot beräknar konfidensintervallet för ett litet urval (small sample confidenveinterval) och använder formeln (ȳ 1 ȳ 2 ) ± t α/2 s p (1/n1 + 1/n 2 ), df = n 1 + n 2 2. Teststatistikan beräknas sen enligt formeln T = ȳ 1 ȳ 2 0 s p (1/n1 + 1/n 2 ) Jämförelse med t-fördelningen med df=23 ger p-värdet Ni kan jämföra värdet på utskriften med egna uträkningar. 3
4 3. Populationsproportionen, p Exemplet som vi ska använda för att visa hur man kan ta fram ett konfidensintervall och utföra hypotestest för p kommer från MS boken (övning sidan 517). Andelen personer som förnyar sitt abonnemang för ett nyhetsmagasin har visat sig vara 60% de senaste åren. För att testa om andelen har förändrats dras ett urval om 200 observationer. 108 personer i urvalet vill förnya sitt abonnemang. För att skatta p och testa H 0 : p = 0.6 H a : p 0.6 kan man använda proc freq-kommandot. data ex1057 ; input renew $ count ; datalines ; ; proc freq data = ex1057 ; tables renew / alpha =0. 05 binomial ( level =1 p =0. 6); weight count ; I output fönstret får vi utskriften. The FREQ Procedure Cumulative Cumulative renew Frequency Percent Frequency Percent Binomial Proportion for renew = Proportion ASE % Lower Conf Limit % Upper Conf Limit Exact Conf Limits 95% Lower Conf Limit % Upper Conf Limit Test of H0: Proportion = 0.6 ASE under H Z One - sided Pr < Z Two - sided Pr > Z Sample Size = 200 4
5 Vi ser i utskriften att proportionen som vill förnya sitt abonnemang blev De två första konfidensintervallgränserna är framräknade med formeln ˆp ± z α/2 ˆpˆq n De mått på teststatistikan vi är intresserade av är de tre sista; "Z", "one sided" och "two sided". "Z" anger det observerade z-värdet från testet. Det vill säga, SAS använder formeln Z = ˆp p 0 p0 q 0 /n. "One sided" och "two sided" anger p-värdet för ett enkelsidigt test H 0 : p = 0.6 respektive dubbelsidigt test H a : p < 0.6 H 0 : p = 0.6 H a : p 0.6 Vi skall i uppgiften testa om p 0.6 därför bör vårt beslut tas genom att titta på p-värdet Ska vi förkasta H 0? 4. Skillnaden mellan två populationsproportioner, p 1 p 2 Exemplet som vi ska använda för att visa hur man kan ta fram ett konfidensintervall och utföra hypotestest för p kommer från MS boken (exempel 8.8 sidan 413). Vi har ett urval om 50 kylskåp av typ A varav 12 är felaktiga och 60 kylskåp av typ B dras varav 12 är felaktiga. Vi vill beräkna et 98% konfidensintervall för p 1 p 2 och testa, (med signifikansnivå α = 0.02) H 0 : p 1 = p 2 H a : p 1 p 2 Man kan använda proc freq-kommandot även här till att utföra hypotestestet. data ex88 ; input status $ brand $ count ; datalines ; fail A 12 work A 38 fail B 12 work B 48 ; proc freq data = ex88 ; tables brand * status / alpha =0. 02 riskdiff ( equal ); weight count ; 5
6 Vi får utskriften The FREQ Procedure Statistics for Table of brand by status Column 2 Risk Estimates ( Asymptotic ) 98% ( Exact ) 98% Risk ASE Confidence Limits Confidence Limits Row Row Total Difference Proportion ( Risk ) Difference Test H0: P1 - P2 = 0 Proportion Difference ASE ( Sample ) Z One - sided Pr < Z Two - sided Pr > Z Sample Size = 110 Vi ser i utskriften att ˆp 1 ˆp 2 = Konfidensintervallet för skillnaden, "Difference, "är framräknad med formeln ( ˆp 1 ˆp 2 ) ± z α/2 ˆp1 ˆq 1 n 1 + ˆp 2 ˆq 2 n 2 De mått på teststatistikan vi är intresserade av är de tre sista; "Z", "one sided" och "two sided". "Z" anger det observerade z-värdet från testet. Det vill säga, SAS använder formeln Z = ˆp 1 ˆp 2. ˆp 1 ˆq 1 n 1 + ˆp 2 ˆq 2 n 2 Vi skall i uppgiften testa om p 1 p 2 därför bör vårt beslut tas genom att titta på p-värdet Ska vi förkasta H 0? Övningar Lös följande uppgifter ur MS med hjälp av SAS
1. Lära sig utföra hypotestest för populationsproportionen. 2. Lära sig utföra test för populationsmedelvärdet
Datorövning 3 Statistikens Grunder 2 Syfte 1. Lära sig utföra hypotestest för populationsproportionen 2. Lära sig utföra test för populationsmedelvärdet 3. Lära sig utföra test för skillnaden mellan två
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Uppgift 1. Produktmomentkorrelationskoefficienten
Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 6 Syfte: 1. Lära sig utföra godness of fit-test 2. Lära sig utföra test av homogenitet 3. Lära sig utföra prövning av hypoteser
Statistiska analyser C2 Inferensstatistik. Wieland Wermke
+ Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga
DATORÖVNING 3: MER OM STATISTISK INFERENS.
DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 2 Syfte: 1. Lära sig presentera data i tabeller 2. Lära sig beskriva data numeriskt 3. Lära sig presentera data i grafer 4.
1. Lära sig beräkna kon densintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera centrala gränsvärdessatsen
Datorövning 2 Statistikens Grunder 2 Syfte 1. Lära sig beräkna kon densintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera centrala gränsvärdessatsen Exempel Beräkna
(a) Lära sig beräkna sannolikheter för binomial- och normalfördelade variabler (b) Lära sig presentera binomial- och normalfördelningen gra skt
Datorövning 2 Statistikens Grunder 1 Syfte 1. Lära sig presentera data i tabeller 2. Lära sig beskriva data numeriskt 3. Lära sig presentera data i grafer Exempel (a) Lära sig beräkna sannolikheter för
2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel
Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram
Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner
. Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%
Mälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Lösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Statistik för teknologer, 5 poäng Skrivtid:
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder och 2, GN, hp, deltid, kvällskurs TE/RC Datorövning 3 Syfte:. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med proc univariate 3. Lära sig rita
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Laboration 2 Inferens S0005M VT18
Laboration 2 Inferens S0005M VT18 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna
Målet för D1 är att studenterna ska kunna följande: Använda några av de vanligaste PROC:arna. Sammanställa och presentera data i tabeller och grafiskt
Datorövning 1 Statistisk teori med tillämpningar Repetition av SAS Syfte Syftet med Datoröving 1 (D1) är att repetera de SAS-kunskaperna från tidigare kurser samt att ge en kort introduktion till de studenter
Laboration 2 Inferens S0005M VT16
Laboration 2 Inferens S0005M VT16 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna
En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Använda några av de vanligaste PROC:arna. Sammanställa och presentera data i tabeller och grafiskt
Datorövning 1 Statistisk teori med tillämpningar Repetition av SAS Syfte Syftet med Datoröving 1 (D1) är att repetera de SAS-kunskaperna från tidigare kurser samt att ge en kort introduktion till de studenter
Medicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
TAMS28 DATORÖVNING 1-2015 VT1
TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Följande resultat erhålls (enhet: 1000psi):
Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 1 Syfte: 1. Lära sig läsa in data i SAS 2. Importera data från Excel 3. Lära sig skriva ut data med proc print 4. Kunna orientera
7.3.3 Nonparametric Mann-Whitney test
7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi
DATORÖVNING 3: MER OM STATISTISK INFERENS.
DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
ANOVA Mellangruppsdesign
ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,
Introduktion och laboration : Minitab
Robert Parviainen, Tel. 471 31 86 E-post: robert@math.uu.se Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.
UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med
Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
4. Kunna orientera sig mellan de olika fönstren
Datorövning 1 Statistikens Grunder 1 Syfte 1 Lära sig läsa in data i SAS 2 Importera data från Excel 3 Lära sig skriva ut data med proc print 4 Kunna orientera sig mellan de olika fönstren Exempel Att
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde
Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Tentamen i matematisk statistik
Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Tentamen består av 9 frågor, totalt 34 poäng. Det krävs minst 17 poäng för att få godkänt och minst 26 poäng för att få väl godkänt.
KOD: Kurskod: PX1200 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sara Landström Tentamensdatum: 2017-01-14 Tillåtna hjälpmedel: Miniräknare Tentamen består
Tentamen i matematisk statistik
Sid (5) i matematisk statistik Statistisk processtyrning 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-3.00 ger maximalt 2 poäng. För godkänt krävs
Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar
Samhällsvetenskaplig metod, 7,5 hp
Samhällsvetenskaplig metod, 7,5 hp Provmoment: Individuell skriftlig tentamen kvantitativ metod, 2,0 hp Ladokkod: 11OA63 Tentamen ges för: OPUS kull H13 termin 6 TentamensKod: Tentamensdatum: Fredag 24
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Räkneövning 3 Variansanalys
Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Uppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
FACIT (korrekta svar i röd fetstil)
v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta
Icke parametriska metoder för variabler mätta på nominal- eller ordinalskala
Föreläsningsanteckningar till: F14 icke parametriska metoder F15 icke parametriska metoder Icke parametriska metoder för variabler mätta på nominal- eller ordinalskala Föreläsningarna baseras på kapitel
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Tentamen i matematisk statistik
Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
Lösningar med kommentarer till övningsuppgifterna i min bok Grundläggande statistiska metoder för analys av kvantitativa data
Lösningar med kommentarer till övningsuppgifterna i min bok Grundläggande statistiska metoder för analys av kvantitativa data Uppgift a Eftersom betygsdata är approximativt normalfördelade väljer man lämpligen
Obligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag
MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems
MINITAB i korthet release 16 Jan-Eric Englund SLU Alnarp Kompendium 2011 Område Agrosystem Course notes Swedish University of Agricultural Sciences Department of Agrosystems Jan-Eric Englund är universitetslektor
Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
2.1 Minitab-introduktion
2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46
Introduktion till. Minitab version 14
Statistiska institutionen LW n/pei/jb Introduktion till Minitab version 14 Innehållsförteckning 1 Introduktion Worksheeten datafönstret Minitabs menyer och Session-fönstret Att spara och öppna Minitab-filer
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, HT 2006 Den obligatoriska
TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Stockholms Universitet Statistiska institutionen Termeh Shafie
Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Målet för D2 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 2 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
OBS! Vi har nya rutiner.
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-11-12 Tillåtna hjälpmedel:
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-09-19 kl. 09:00 13:00
OBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna
Maximalt antal poäng för hela skrivningen är 22 poäng. För Godkänt krävs minst 13 poäng. För Väl Godkänt krävs minst 18 poäng.
Försättsblad KOD: Kurskod: PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Pär Bjälkebring Tentamensdatum:
Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Del A: Schema för ifyllande av svar nns på sista sidan
Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa
Sociologi GR (A) Sociologisk Metod Examination #2 Peter Axelsson. N Minimum Maximum Mean Std. Deviation
Uppgift 1 Vikt Vikt är en variabel på kvotskalan. Det gör att vi kan räkna med aritmetiskt medelvärde (m) som centralmått (Djurefeldt, 2003:59). Medelvärdet är 35,85 kg. Det saknas värden för två observationer,
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik
Statistik Lars Walter Fil.lic. Statistik Linköping universitet Stockholms universitet Karolinska sjukhuset Sveriges Lantbruksuniversitet Linköpings universitet Folkhälsocentrum, LiÖ FoU-enheten, LiÖ Statistik
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
SOPA62 - Kunskapsproduktion i socialt arbete
SOPA62 - Kunskapsproduktion i socialt arbete 2. Mer hypotesprövning och något om rapporten 1 Evidensbaserad behandling Behandling bygger på vetenskap och beprövad erfarenhet. "Beprövad erfarenhet" får
8.1 General factorial experiments
Exempel: Vid ett tillfälle ville man på ett laboratorium jämföra fyra olika metoder att bestämma kopparhalten i malmprover. Man är även intresserad av hur laboratoriets tre laboranter genomför sina uppgifter.
Population. Observationsenhet. Stickprov. Variabel Ålder Kön. Blodtryck 120/80. Värden. 37 år. Kvinna
Varför statistik Vi vill sammanfatta stora mängder av data i syfte att: Kvantitativt beskriva fenomen Undersöka samband mellan variabler Undersöka skillnader mellan grupper i något avseende Undersöka skillnader
SOPA62 - Kunskapsproduktion i socialt arbete
SOPA62 - Kunskapsproduktion i socialt arbete 1. Beskrivande statistik och lite hypotesprövning 1 Kvantitativ vs Kvalitativ metod Kvantitativt: Man definierar precisa begrepp och ställer därefter frågor
Hypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
Tentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att