Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl
|
|
- Alexandra Abrahamsson
- för 8 år sedan
- Visningar:
Transkript
1 Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr: För att få maximala 10 poäng på en uppgift krävs att lösningen är så utförlig att den utan svårighet kan följas. 40 poäng ger säkert betyget Godkänd och 60 poäng ger säkert betyget Väl godkänd. Lycka till! Uppgift 1. I ett företag som säljer en produkt spenderar man varje vecka en summa på marknadsföring av produkten. Denna summa varierar beroende på företagets övriga utgifter. En dag blev ledningen i företaget intresserad av att utvärdera sambandet mellan försäljning och utgifter för marknadsföring. Under en tioveckorsperiod insamlades därför data varje vecka (dvs vi har tio observationer). Efter att ha bearbetat data erhölls följande uppgifter: Σx = 66 Σx 2 = 528 Σy = 763 Σy 2 = Σxy = 5254, där y = försäljning i 1000-tals kronor under en vecka och x = utgifter för marknadsföring i 1000-tals kronor under samma vecka. För att beskriva det aktuella sambandet avser man använda följande linjära regressionsmodell: y = a + bx där y är den anpassade försäljningen och x är utgifter för marknadsföring. a) Beräkna värdena på modellens koefficienter a och b. b) Tolka de erhållna koefficienterna i ord. c) Vad blir den genomsnittliga försäljningen då marknadsföringsutgifterna är 5500 kronor under en vecka?
2 Uppgift 2. I en litet företag har de åtta anställda följande inkomster (i 1000-tals kronor): a) Beräkna kvartiler och medelvärde. b) Illustrera inkomstfördelningen i företaget med hjälp av ett lådagram (boxplot). c) Finns det några extremvärden? Motivera! d) Vilket av de lägesmått du har beräknat tycker du bäst beskriver materialet? Motivera! Uppgift 3. I samband med ett försök inträffar händelsen A med sannolikheten 0.8 och händelsen B med sannolikheten 0.7. Man vet dessutom att sannolikheten för att båda händelserna inträffar är 0.6. a) Hur stor är sannolikheten för att en och endast en av händelserna A och B inträffar? b) Hur stor är sannolikheten för att ingen av händelserna A och B inträffar? c) Givet att minst en av händelserna A och B inträffat, hur stor är då sannolikheten för att händelsen B inträffat?
3 Uppgift 4. Man utför åtta kast med ett asymmetriskt mynt, där sannolikheten för krona är 0.7. a) Vilken fördelning har slumpvariabeln antal krona vid åtta kast med ovannämnda asymmetriska mynt? Beräkna väntevärde och standardavvikelse för slumpvariabeln. Beräkna även sannolikheterna för följande utfall vid åtta kast med ovannämnda asymmetriska mynt: b) minst tre klave c) högst fyra krona d) exakt två krona e) minst fyra klave om man vet att minst tre klave erhållits. Uppgift 5. Vid tillverkning av en produkt är felfrekvensen 0.03, dvs sannolikheten att produkten skall bli felaktig på ett eller annat sätt är Vad är sannolikheten att högst två exemplar blir felaktiga vid tillverkning av 250 stycken om vi antar att de olika exemplaren blir felaktiga oberoende av varandra? Gör en lämplig a) Normalapproximation med halvkorrektion (kontinuitetskorrektion). b) Normalapproximation utan halvkorrektion (kontinuitetskorrektion). c) Gör en exakt beräkning av den sökta sannolikheten. d) Vilken approximation blev bäst? Blev resultatet som väntat? Motivera! Uppgift 6. En amerikansk ekonom studerar inkomstfördelningen i en stor population och har därför slumpmässigt valt ut n = 400 individer ur populationen. Låt X = inkomst i dollar per år. Av studien framgår det bland annat att Σx = och att s 2 = a) Hjälp henne med analysen genom att beräkna ett 95%-igt konfidensintervall för μ = medelinkomsten i populationen. Glöm inte att tolka intervallet i ord. b) Förklara kortfattat innebörden av centrala gränsvärdessatsen (CGS).
4 Uppgift 7. Vår amerikanske ekonom studerar dessutom inkomstfördelningen i en annan stor population. Hon vet av erfarenhet från tidigare undersökningar att medelinkomsten per år har varit dollar. Hon misstänker dock att den är högre nu, och bestämmer sig därför att utföra ett hypotestest på 1% signifikansnivå. Av brist på ekonomiska resurser har hon denna gång enbart valt ut n = 16 individer slumpmässigt ur populationen. Låt X = inkomst i dollar per år. Från stickprovet får hon följande data: Σx = och s 2 = Ger data stöd åt hennes misstanke? a) Ange de förutsättningar som måste vara uppfyllda för att testet skall ha den signifikansnivå hon har angett. b) Hjälp henne med analysen genom att utföra hypotestestet. c) Beräkna p värdet (probability value) för samma data, men med känd populationsvarians σ 2 = Uppgift 8. En variabel X är normalfördelad med känd varians σ 2 = 64, men med okänt väntevärde μ. Utifrån ett slumpmässigt stickprov omfattande n = 36 observationer beräknades stickprovsmedelvärdet till a) Beräkna ett 99%-igt konfidensintervall för μ och tolka det erhållna intervallet i ord. b) Hur stort stickprov krävs det om längden på intervallet i uppgift a) skall vara högst två enheter?
5 ! " #$%! "! " %&# '" &$& # " (( # #$ #) ## ##* #*) *)# +!, " " " "
6 -" './" " " *)# /" - 0 " 0 0 " / " $. " #
7 * 1" " $
8 ) 2,",,/!! % - " "! " "! " 34'. 5)6 " - 5)6 " '!! *
9 &!,," "" "" " '7" 8 " 9 " " )
10 (. 556 " " :" " # " " "!,,0 " *#& " " " # %
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15
Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Läs merStatistisk undersökningsmetodik (Pol. kand.)
TENTAMEN Tentamensdatum 2008-10-02 Statistisk undersökningsmetodik (Pol. kand.) Namn:.. Personnr:.. Tentakod: Obs! Var noga med att skriva din tentakod på varje lösningsblad som du lämnar in. Skrivtid
Läs merBeskriv hur du, utan att räkna alla pärlor, kan göra en god uppskattning av hur många pärlor som finns av respektive färg. 2/0/0
Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En burk innehåller 10 000 pärlor i fyra olika färger. eskriv hur du, utan att räkna alla pärlor, kan göra en god uppskattning
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
Läs merF14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15
1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla
Läs merResultatet läggs in i ladok senast 13 juni 2014.
Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar
Läs mera) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?
Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten
Läs merTentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''
Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Hjälpmedel:'Valfri'räknare,'egenhändigt'handskriven'formelsamling'(4''A4Esidor'på'2'blad)' och'till'skrivningen'medhörande'tabeller.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Läs merLäs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:
Läs merÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
Läs merLektion 1: Fördelningar och deskriptiv analys
Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över
Läs merDatorlaboration 2 Konfidensintervall & hypotesprövning
Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska
Läs merBIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du
Läs merk x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
Läs merBeskrivande statistik Kapitel 19. (totalt 12 sidor)
Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart
Läs merLULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Robert Lundqvist, tel
Läs merTabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger
Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Thommy erlinger Innehåll 1 Beskrivande statistik 3 1.1 Medelvärdeochstandardavvikelse... 3 1.2 Chebyshevsregel... 3 1.3 Empiriskaregeln(normalfördelningsregeln)...
Läs merTentamen MVE265 Matematisk statistik för V, 2013-01-19
Tentamen MVE6 Matematisk statistik V, 03-0-9 Tentamen består av åtta uppgifter om totalt 0 poäng. Det krävs minst 0 poäng betyg 3, minst 30 poäng 4 och minst 40. Examinator: Ulla Blomqvist Hjälpmedel:
Läs merTentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna
Läs merStorräkneövning: Sannolikhetslära
UPPSALA UNIVERSITET Matematiska institutionen Jakob Björnberg Sannolikhet och statistik 2012 09 28 Storräkneövning: Sannolikhetslära 1. (Tentamen, april 2009.) Man har efter studier av beredskapen hos
Läs mer9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Läs merBlandade problem från väg- och vattenbyggnad
Blandade problem från väg- och vattenbyggnad Sannolikhetsteori (Kapitel 1 7) V1. Vid en undersökning av bostadsförhållanden finner man att av 300 lägenheter har 240 bad (och dusch) medan 60 har enbart
Läs merMatematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2
Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Läs merTentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Läs merObligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Läs merDiskussionsproblem för Statistik för ingenjörer
Diskussionsproblem för Statistik för ingenjörer Måns Thulin Rolf Larsson rolf.larsson@math.uu.se Jesper Rydén jesper.ryden@math.uu.se Senast uppdaterad 27 januari 2016 Diskussionsproblem till Lektion 3
Läs merKap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Läs merTentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Läs merLär lätt! Statistik - Kompendium
Björn Lantz Lär lätt! Statistik - Kompendium Studentia 006 Björn Lantz och Studentia Ladda ner kompendiet gratis på ISBN 87-7681-080-1 Studentia Innehållsförteckning Innehållsförteckning 1. Introduktion
Läs merT-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas
Läs mer0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merTentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00
Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Läs merSummor av slumpvariabler
1/22 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 8/2 2013 2/22 Dagens föreläsning Väntevärde och varians Vanliga kontinuerliga fördelningar Parkeringsplatsproblemet
Läs mer(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant?
LÖSNINGAR till tentamen: Statistik och sannolikhetslära (LMA12) Tid och plats: 8.3-12.3 den 24 augusti 215 Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 12 poäng, 4: 18 poäng, 5: 24
Läs merLektionsanteckningar 2: Matematikrepetition, tabeller och diagram
Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1
Läs merTentamen för kursen Statististik för naturvetare 16 januari 2004 9 14
STOCKHOLMS UNIVERSITET MS1130 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 16 januari 2004 Tentamen för kursen Statististik för naturvetare 16 januari 2004 9 14 Examinator: Louise af Klintberg,
Läs merStatistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera
Läs merTentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl
Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs merSTOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, HT 2006 Den obligatoriska
Läs merÄMNESPLANENS STRUKTUR. Syfte Centralt innehåll Kunskapskrav. Mål KUNSKAPSKRAV
Syfte Centralt innehåll Kunskapskrav Mål KUNSKAPSKRAV Läraren ska sätta betyg på varje kurs och det finns prec i serade kunskapskrav för tre av de godkända betygs stegen E, C och A. Kunskapskraven är för
Läs mer-*/+&3*/("3 47&/4,5 )676% &9".&/41"11&3,0--&(*&) '5&/ (-04) '5&/ '03."5 -*/+&3*/("3 4*%03 4,0-) '5&/ www.ibnfmjo.el 4,0-1"11&3 LINEX gör det roligt att lära Matematik behöver inte bara handla om siffror
Läs merLär lätt! Statistik - Kompendium
Björn Lantz Lär lätt! Statistik - Kompendium Studentia 006 Björn Lantz och Studentia Ladda ner kompendiet gratis på ISBN 87-7681-080-1 Studentia Innehållsförteckning Innehållsförteckning 1. Introduktion
Läs merLösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen?
Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001 1. Månadslönerna för 10 lärare vid en viss skola är 1 17 700 19 800 19 900 20 200 20 800 16 100 17 000 23 500 19 700 21 100 Beräkna medelvärdet,
Läs merExempel från föreläsningar i Matematisk Statistik
Exempel från föreläsningar i Matematisk Statistik 2015 Födelsedagsparadoxen Antag att k slumpmässigt utvalda individer samlas i ett rum. Vad är sannolikheten att åtminstone två av individerna har samma
Läs mer1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss?
1 ÖVNINGAR I INDUKTIV LOGIK 1.1 En tärning kastas. Ange sannolikheten för att antalet ögon är a) 3 b) inte 3 c) 3 eller 5 d) jämnt e) mindre än 4 f) jämnt och mindre än 4 g) jämnt eller mindre än 4 h)
Läs mer5. BERÄKNING AV SANNOLIKHETER
5. BERÄKNING V SNNOLIKHETER 5.1 dditionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt
Läs merStatistik Lars Valter
Lars Valter LARC (Linköping Academic Research Centre) Enheten för hälsoanalys, Centrum för hälso- och vårdutveckling Statistics, the most important science in the whole world: for upon it depends the applications
Läs merTT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:
Läs merTentamen i Matematisk statistik, LKT325, 2010-08-26
Tentamen i Matematisk statistik, LKT35, 010-08-6 Uppgift 1: Beräkna sannolikheten P(A B) om P(A C B) = 0.3 och P(B C ) = 0.6 Uppgift : Sannolikheten för att behöva kassera en balk p.g.a. dålig hållfasthet
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00
Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt
Läs merTjänsteskrivelse. Kompetenscentrum "Djur som resurs"
Malmö stad Stadsområdesförvaltning Norr 1 (3) Datum 2014-11-27 Vår referens Ann Rubin Planeringssekreterare ann.rubin@malmo.se Tjänsteskrivelse Kompetenscentrum "Djur som resurs" SOFN-2014-524 Sammanfattning
Läs merUppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER MÅNDAGEN DEN 26 AUGUSTI 203 KL 08.00 3.00. Examinator: Gunnar Englund tel. 073 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Läs merMSG830 Statistisk analys och experimentplanering - Lösningar
MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:
Läs merUppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
Läs merKompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1
Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs B som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merIndustriell matematik och statistik, LMA136 2013/14
Industriell matematik och statistik, LMA136 2013/14 14 Februari 2014 Disposition ion Funktioner av stokastiska variabler E[aX + b] = ae[x ] + b Var(aX + b) = a 2 Var(X ) E[g(X { )] = x i Ω g(x i)p(x =
Läs merSTOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avdelningen för matematisk statistik 27 maj 2015
STOCKHOLMS UNIVERSITET MT7015 MATEMATISKA INSTITUTIONEN TENTAMEN Avdelningen för matematisk statistik 27 maj 2015 Tentamen i Försäkringsredovisning 7,5 hp 09.00-14.00 onsdag den 27 maj 2015 Tillåtna hjälpmedel
Läs merTentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Fredagen
Läs merSVERIGES 18-ÅRINGAR HAR FÅTT EN VIKTIG UPPGIFT
SVERIGES 18-ÅRINGAR HAR FÅTT EN VIKTIG UPPGIFT 9 Har du någon skada eller andra besvär i fotleder eller fötter? Nej Ja, men besvären är lindriga Ja, jag har måttliga besvär Ja, jag har svåra besvär Källa:
Läs merTENTAMEN KVANTITATIV METOD (100205)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B, Vetenskaplig metod TENTAMEN KVANTITATIV METOD (205) Examinationen består av 11 frågor, några med tillhörande följdfrågor. Besvara alla frågor i direkt anslutning
Läs merSTOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson (examinator) VT2017 TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2017-04-20 LÖSNINGSFÖRSLAG Första version, med reservation för tryck-
Läs mer28 Lägesmått och spridningsmått... 10
Marjan Repetitionsuppgifter Ma2 1(14) Innehåll 1 Lös ekvationer exakt................................... 2 2 Andragradsfunktion och symmetrilinje........................ 2 3 Förenkla uttryck.....................................
Läs merExtra övningssamling i undersökningsmetodik. till kursen Regressionsanalys och undersökningsmetodik, 15 hp
Extra övningssamling i undersökningsmetodik HT10 till kursen Regressionsanalys och undersökningsmetodik, 15 hp Författad av Karin Dahmström 1. Utgå från en population bestående av 5 personer med följande
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merNy dom kan ändra synen på människohandel
Ny dom kan ändra synen på människohandel Publicerad 2016-03-01 Par dömt till fängelse. En man och en kvinna har dömts för människohandel med en prostituerad trots att offret vare sig varit inlåst eller
Läs merTillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1
Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Läs merPressmeddelande. Så blir din ekonomi i januari 2011. Stockholm 24 november 2010
Pressmeddelande Stockholm 24 november 2010 Så blir din ekonomi i januari 2011 Få vinnare i årets prognos. Har du bostadslån med rörlig ränta får du det till och med sämre. Även många pensionärer får mindre
Läs merOMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,
Läs merKomvux/gymnasieprogram:
Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del
Läs merPerspektiv Helsingborg
Statistik om Helsingborg och dess omvärld Nr 4: 2012 Perspektiv Helsingborg ARBETSPENDLING TILL OCH FRÅN HELSINGBORG ÅR 2010 Arbetspendlingen till och från Helsingborg över kommungränsen, är ovanligt stor
Läs merPreliminär rapport om populationsutveckling och storlek av brunbjörn i Sverige, 2004
Preliminär rapport om populationsutveckling och storlek av brunbjörn i Sverige, 24 En rapport till Naturvårdsverket från Skandinaviska Björnprojektet 31 maj 24 Jonas Kindberg Jon Swenson Sven Brunberg
Läs mer36 poäng. Lägsta poäng för Godkänd 70 % av totalpoängen vilket motsvarar 25 poäng. Varje fråga är värd 2 poäng inga halva poäng delas ut.
Vetenskaplig teori och metod Provmoment: Tentamen 3 Ladokkod: VVT012 Tentamen ges för: SSK05 VHB 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2012-04-27 Tid: 09.00-11.00 Hjälpmedel: Inga hjälpmedel
Läs mer52101 Utforska siffror
52101 Utforska siffror Innehåll: 1 uppsättning brickor, numrerade från 1 till 24 1 uppsättning räknebrickor 1 uppsättning med 30 stora siffror plastdjur 4 blanka brickor en låda med lock kopieringsbara
Läs merTentamen i Sannolikhetslära och statistik Kurskod S0008M
Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson
Läs merKapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Läs merTentamen MVE300 Sannolikhet, statistik och risk
Tentamen MVE3 Sannolihet, statisti och ris 215-6-4 l. 8.3-13.3 Examinator: Johan Jonasson, Matematisa vetensaper, Chalmers Telefonvat: Johan Jonasson, telefon: 76-985223 31-7723546 Hjälpmedel: Typgodänd
Läs merTentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
Läs merLösningar till tentauppgifterna sätts ut på kurssidan på nätet idag kl 19. Omtentamen i Programmering C, 5p, fristående, kväll, 040110.
1(8) ÖREBRO UNIVERSITET INSTITUTIONEN FÖR TEKNIK Lösningar till tentauppgifterna sätts ut på kurssidan på nätet idag kl 19. Denna tenta kommer att vara färdigrättad On 14/1-04 och kan då hämtas på mitt
Läs mer1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs merTentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A Deltentamen, 4p november 004, kl. 09.00-.00 Tillåtna hjälpmedel: Bifogad formel- och
Läs mer8-1 Formler och uttryck. Namn:.
8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?
Läs merLärare 2. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 2 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen
Läs merMatematikkunskaperna 2005 hos nybörjarna på civilingenjörsprogrammen vid KTH
Matematikkunskaperna 2005 hos nybörjarna på civilingenjörsprogrammen vid KTH bearbetning av ett förkunskapstest av Lars Brandell Stockholm oktober 2005 1 2 Innehållsförteckning INNEHÅLLSFÖRTECKNING...
Läs merEnkät rörande boende för äldre i Krokoms Kommun
Enkät rörande boende för äldre i s Kommun 2015-10-14 I din hand håller du just nu en enkät som vi vill att du skall fylla i. Enkäten är helt anonym och skall endast användas för att få fram önskemål om
Läs merTentamen OOP 2015-03-14
Tentamen OOP 2015-03-14 Anvisningar Fråga 1 och 2 besvaras på det särskilt utdelade formuläret. Du får gärna skriva på bägge sidorna av svarsbladen, men påbörja varje uppgift på ett nytt blad. Vid inlämning
Läs mer