Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl
|
|
- Ellinor Lundqvist
- för 9 år sedan
- Visningar:
Transkript
1 Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare. Ansvarig lärare: Hannah Hall, telefon 00 - (0) Övrigt: För att få maximala poäng på en uppgift krävs att antaganden och motiveringar noga anges samt att lösningen även i övrigt är så utförlig att den utan svårighet kan följas. För betyget Godkänd krävs minst 0 poäng, för betyget Väl Godkänd krävs minst 0 poäng. Uppgift a) Illustrera ovanstående data i ett stam-blad diagram. b) Beräkna medianen. c) Beräkna kvartilavståndet. d) Illustrera materialet i ett boxplot (lådagram). e) Utifrån dina diagram, blir medelvärdet större eller mindre än medianen? (a-e poäng vardera) Uppgift En gång om dagen på ett visst kärnkraftverk genomförs ett byte av en radioaktiv detalj, varvid en nödsituation kan uppstå. Att en nödsituation uppstår är dock mycket ovanligt, sannolikheten för det är endast 0,00. Man använder för säkerhets skull ändå ett larmsystem för att övervaka bytet. Om en nödsituation råder så går larmet med sannolikheten 0,9. Om en nödsituation inte råder så går larmet med sannolikheten 0,0. Vad är sannolikheten för att det faktiskt råder en nödsituation när larmet går? Kommentera. ( poäng)
2 Uppgift 3 Fyra variabler X1, X, X3 och X presenterades i följande histogram: 1 Frequency Frequency 0 0 X1 X Frequency Frequency 0 0 X3 X Samma variabler presenterades också i en boxplot diagram (lådagram), men etiketten om variabelns namn fattas. Para ihop boxplot diagrammen A, B, C och D med respektive variabel. ( poäng) 0 A B C D
3 Följande boxplot diagram visar fördelningen av en viss variabel delat på fem olika grupper. Jämför och kommentera på fördelningarna av de fem olika grupper (1-5). ( poäng) Uppgift Till varje del uppgift (a-e) ange och motivera fördelningen för X i följande exempel. Glöm inte att ange värdet på parametrarna. a) Hannah tar 5 lotter i ett lotteri. Lotteriet har totalt 0 lotter varav stycken är vinstlotter. Låt X beteckna antal vinstlotter som Hannah erhåller. b) En viss process i en dator som körs en gång per sekund dygnet runt åstadkommer att datorn havererar med sannolikheten 1 på en miljon. Låt X beteckna antalet haverier per månad (30 dagar). c) En revolver med plats för skott har laddats med åtta tomhylsor och två skarpa skott, slumpmässigt placerade. Man vill beräkna hur sannolikt det är att ett skott går av när man trycker fyra gånger på avtryckaren (X betecknar antal skott). d) Sannolikheten att ett flygplan av en viss typ kraschar under en flygning är 0,0001. Under ett år görs flygningar med den aktuella flygplanstypen. Låt X beteckna antal flygplaner som kraschar ett visst år. e) Kristoffer går upp på en tentamen utan att han har pluggat innan! Han har tur, varje fråga består av sex kryssalternativ, varav ett är rätt. Totalt är det 0 frågor. Låt X beteckna antal korrekta svar Kristoffer har på sin tentamen, då han bara gissar på varje fråga. (a-e poäng vardera)
4 Uppgift 5 SCB har fått ett uppdrag att skatta medelåldern och proportionen med en viss egenskap i en mycket stor population. För att kunna genomföra detta så tog man ett slumpmässigt stickprov som består av 00 personer. Medelåldern för dessa beräknades till 50 år och standardavvikelsen till 5 år. Man noterade också att bland personerna i stickprovet var 0 över 55 år. Tänk att du är anställd hos SCB och du har fått följande uppgifter angående detta uppdrag: a) Skatta medelåldern i populationen med ett 95% konfidensintervall. b) Skatta andelen personer över 55 år i populationen med ett 95% konfidensintervall. Uppgift ( poäng) Antag att livslängden för glödlampor producerade av ett visst företag är en normalfördelad slump variabel med väntevärdet µ och standardavvikelsen σ = 00 timmar. Vi vill pröva nollhypotesen µ = 00 mot hypotesen µ > 00 med hjälp av ett stickprov som består av 0 individer och signifikansnivån 5%. a) Genomför hypotestestning om stickprovets medelvärdet x = 10. b) Förklara innebörden av begreppen typ I fel och typ II fel i anslutning till detta exempel. Uppgift 7 För två variabler X och Y har vi följande datamaterial: Y X a) Skissa observationerna på X och Y i en graf. ( poäng)
5 b) Beräkna med hjälp av minsta kvadrat metoden (least square method) interceptet a och regressionskoefficienten b. c) Använd dina beräkningar i (b) för att beräkna residualspridningen (standard error of estimate). d) Beräkna determinationskoefficienten r, och tolka den. Uppgift ( poäng) En doktorand från statsvetenskap vill komplettera sin avhandling med en empirisk studie. För att denna studie skall genomföras tar han ett stickprov som består av n personer som skall intervjuas. Anta att sannolikheten att en slumpmässigt vald person befinner sig hemma vid första kontakttillfället är 0.. a) Vad är sannolikheten att högst 1 personer befinner sig hemma vid första kontakttillfället om n = 0. b) Vad är sannolikheten att högst 1 personer befinner sig hemma vid första kontakttillfället om n = 0. ( poäng)
6 Lösning Uppgift 1 a) Stam-blad diagram. Frequency Stem & Leaf 1 Extremes (=<35) b) Medianen: Q c) Kvartilavståndet: Q d) Boxplot (lådagram) Placering i ordnat + 1 data: L 5 = =, 5 Placering i ordnat + 1 data: L 50 = = 1, 5 Placering i ordnat 3( + 1) data: L 75 = = 1, 75 Kvartilavståndet Q = Q3-Q1 Extremobservationer ligger under: Q1 1,5Q Eller över: Q3 + 1,5Q Q1 ligger mellan obs och7 Q 1 = + 0,5( ) =,5 Q ligger mellan obs 1 och Q = = 77 Q3 ligger mellan obs 1 och 19 Q3 = 3 + 0,75( 3) = 3,75 Q = 3,75 -,5 = 19,5,5 1,5(19,5) = 35,5 3,75 + 1,5(19,5) = 11,5 Det finns en extrem observation med värde 35. Minsta värdet 35 (om man bortser från extrema observationer är det ) Max värdet 9
7 VAR00007 e) Utifrån diagrammen (stam-blad och boxplot) ser man att fördelningen är negativ skev, då är medelvärdet mindre än medianen. Uppgift Från uppgiften får vi följande information: A = nödsituation råder)= 0,00 ~A) = 1 - A) = 1-0,00 = 0,99 B = Larmet går I A = nödsituation) = 0,9 B = Larmet går I ~A = nödsituation inte råder) = 0,0 Vi söker: Sannolikheten för att det faktiskt råder en nödsituation när larmet går, dvs. A = nödsitation råder I B = Larmet går) Från sannolikhetsteori vet vi: P ( A B) = Då måste vi beräkna AB) och B). AB) B) Från sannolikhetsteori vet vi: P ( B A) = AB) A) Då kan vi ta fram AB): P ( AB) = A) B A) = 0,00(0,9) = 0, 0019 Från sannolikhetsteori vet vi: P ( B) = BA) + B ~ A)
8 Vi vet att AB) = BA). Men vi måste tar fram B~A): B ~ A) Vi vet att: P ( B ~ A) =, ~ A) då är: P ( B ~ A) = ~ A) B ~ A) = 0,99(0,0) = 0, 079 P ( B) = BA) + B ~ A) = 0, ,079 = 0,01 AB) 0,0019 Svaret är: P ( A B) = = = 0, 0391 B) 0,01 Dvs. % chans att det faktiskt råder en nödsituation när larmet går! Uppgift 3 Utgår ifrån fördelningen i histogramet och jämför detta med boxploterna, tänk på spridning, gruppering, medianen, skevhet mm. X1 = C X = D X3 = A X = B Kommentera på de enskillda grupper (tex. spridning, skevhet och central tendensen) och jämför alla fem grupper (tex. störst/ minst spridning, lika/olika skevhet, central tendensen, spridning).
9 Uppgift a) Man gör ett försök och väljer slumpmässigt 5 lotter, n=5. Det finns totalt 0 lottar i lotteriet, N=0, av dessa är vinstlotter (dvs. har S den önskad egenskap), S=. Andelen vinstlotter är π = = = 0, N 0 X betecknar antal vinstlotter Hannah erhåller. X är en diskretslumpvariabel. I varje delförsök en lott ger vinst eller ej. Delförsökerna är beroende av varandra, dvs. lotterna väljs utan återläggning. X följer en hypergeometrisk fördelning, X ~ Hyp(N=0,n=5, S=) b) X betecknar antalet haverier per månad (30 dagar), dvs. här kan man anta att det finns ingen övre gräns på antalet haverier, det är tiden som är begränsad till en månad (se fotnot **). X är en diskretslumpvariabel. På en månad körs processen: n = 0(sek)*0(min)*(tim)*30(dagar) = gånger Varje gång processen körs är sannolikheten för haveri 1 π = = 0, Det genomsnittliga antalet haverier per vecka är alltså: μ = n π = * 0, =,59 X följer en Poissonfördelning, X ~ Po( μ =, 59 ) **Här kan man se på svaret som en approximation till slumpvariabel X som är Binomialfördelad (eftersom π är liten och n stor), X räknar antalet haverier under en månad, dvs. X är begränsad till antal gånger processen körs, 1 n= 9 000, där sannolikheten för haverie är π = = 0,
10 c) Man gör ett försök och trycker fyra gånger på avtryckaren av en revolver, n=. Det finns totalt plats för skott i revolvern, N=, av dessa har laddats med ett skott (den önskad egenskap), S=. Andelen med skott är S π = = = 0, N X betecknar antal skott när man trycker gånger på avtryckaren. X är en diskretslumpvariabel. I varje delförsök, tryckning av avtryckaren, resulterar med en skott eller ingenting. Delförsökerna är beroende av varandra, dvs. det finns ingen återläggning av skott. X följer en hypergeometrisk fördelning, X ~ Hyp(N=, n=, S=) d) X betecknar antalet flygplaner som kraschar ett visst år, dvs. det finns ingen övre gräns på antalet krashcar, det är tiden som är begränsad till ett år. (Se fotnot**). X är en diskretslumpvariabel. Sannolikheten att ett flygplan av en viss typ kraschar under en flygning är π =0,0001, under ett år görs n=7000 flygningar. Det genomsnittliga antalet kraschar per år är: μ perår = antalflygningar sannolikhetenförkrash = ,0001 = 0,7 X följer en Poissonfördelning, X ~ Po( μ = 0, 7 ) **Här kan man se på svaret som en approximation till slumpvariabel X som är Binomialfördelad (eftersom π är liten och n stor), X räknar antalet krashar, som kan vara max antal flygningar som är n = under ett år, där sannolikheten för krash är π = 0, e) Man gör ett försök och går upp på en tenta med 0 frågor, n=0. I varje delförsök, när man svarar på en fråga, får man antligen rätt eller fel. Sannolikheten att välja ut rätt svar på ett slumpmässigt sätt är antalrätt 1 π = = = 0,17, och är densamma vid varje fråga. antalalternativ Sannolikheten att svara rätt på en fråga är oberoende av tidiagre gissningar, dvs. delförsöken är oberoende av varandra. X betecknar antal korrekta svar Kristoffer har på sin tentamen, då han bara gissar på varje fråga. X är en diskretslumpvariabel. 1 X följer en Binomialfördelning, X ~ Bin(n=0, π = = 0, 17 )
11 Uppgift 5 a) n = 00, x = 50 och s=5. 50 ± 1,9.(5/0) 50 ±.5 (7,55, 5,5) b) p=0/00=0,55 0,55±1,9. 0,55.0,5/ 00 0,55±0,0 (0,50, 0,59) Uppgift a) H 0 :µ=00 H 1 :µ>00 Z=10-00/(00/)=5 Z från tabellen = 1, 5 >1, vi förkastar H 0. b) se boken. Uppgift 7 a) Y=a+b.X b=1,71 a=1,5 b) residuals: S Y.X =1,3. c) R =0,93.
12 Uppgift a) X: antal personer som befinner sig hemma vid första kontakttillfället. n=0, p=0, X är Bin(0, 0,) n*p 5 n*(1-p) 5 X är appox. N(0, ) X 1)=(X-µ)/σ (1-0)/) = Z -15,5) = 0 b) X: antal personer som befinner sig hemma vid första kontakttillfället. n=0, p=0,. X är Bin(0, 0,) X 1)=0,930 (från tabellen).
Tentamen i Statistik, STA A13 (4 poäng) Lördag 11 november 2006, Kl
Tentamen i Statistik, STA A13 ( poäng) Lördag 11 november 00, Kl 09.00-13.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:
Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna
Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15
Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:
Tentamen i Statistik, STA A13 Deltentamen 1, 4p 27 mars 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 7 mars 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:
Statistisk undersökningsmetodik (Pol. kand.)
TENTAMEN Tentamensdatum 2008-10-02 Statistisk undersökningsmetodik (Pol. kand.) Namn:.. Personnr:.. Tentakod: Obs! Var noga med att skriva din tentakod på varje lösningsblad som du lämnar in. Skrivtid
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund
F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15
1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla
Lektion 1: Fördelningar och deskriptiv analys
Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling
TENTAMEN KVANTITATIV METOD (100205)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B, Vetenskaplig metod TENTAMEN KVANTITATIV METOD (205) Examinationen består av 11 frågor, några med tillhörande följdfrågor. Besvara alla frågor i direkt anslutning
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Robert Lundqvist, tel
a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?
Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten
Tentamen MVE265 Matematisk statistik för V, 2013-01-19
Tentamen MVE6 Matematisk statistik V, 03-0-9 Tentamen består av åtta uppgifter om totalt 0 poäng. Det krävs minst 0 poäng betyg 3, minst 30 poäng 4 och minst 40. Examinator: Ulla Blomqvist Hjälpmedel:
Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant?
LÖSNINGAR till tentamen: Statistik och sannolikhetslära (LMA12) Tid och plats: 8.3-12.3 den 24 augusti 215 Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 12 poäng, 4: 18 poäng, 5: 24
Resultatet läggs in i ladok senast 13 juni 2014.
Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar
Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram
Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1
Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger
Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Thommy erlinger Innehåll 1 Beskrivande statistik 3 1.1 Medelvärdeochstandardavvikelse... 3 1.2 Chebyshevsregel... 3 1.3 Empiriskaregeln(normalfördelningsregeln)...
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera
Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl
Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Uppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Diskussionsproblem för Statistik för ingenjörer
Diskussionsproblem för Statistik för ingenjörer Måns Thulin Rolf Larsson rolf.larsson@math.uu.se Jesper Rydén jesper.ryden@math.uu.se Senast uppdaterad 27 januari 2016 Diskussionsproblem till Lektion 3
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Statistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Tentamen i Matematisk statistik, LKT325, 2010-08-26
Tentamen i Matematisk statistik, LKT35, 010-08-6 Uppgift 1: Beräkna sannolikheten P(A B) om P(A C B) = 0.3 och P(B C ) = 0.6 Uppgift : Sannolikheten för att behöva kassera en balk p.g.a. dålig hållfasthet
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Statistik Lars Valter
Lars Valter LARC (Linköping Academic Research Centre) Enheten för hälsoanalys, Centrum för hälso- och vårdutveckling Statistics, the most important science in the whole world: for upon it depends the applications
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du
Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A Deltentamen, 4p november 004, kl. 09.00-.00 Tillåtna hjälpmedel: Bifogad formel- och
Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen?
Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001 1. Månadslönerna för 10 lärare vid en viss skola är 1 17 700 19 800 19 900 20 200 20 800 16 100 17 000 23 500 19 700 21 100 Beräkna medelvärdet,
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart
Beskrivande statistik Kapitel 19. (totalt 12 sidor)
Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder och 2, GN, hp, deltid, kvällskurs TE/RC Datorövning 3 Syfte:. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med proc univariate 3. Lära sig rita
Storräkneövning: Sannolikhetslära
UPPSALA UNIVERSITET Matematiska institutionen Jakob Björnberg Sannolikhet och statistik 2012 09 28 Storräkneövning: Sannolikhetslära 1. (Tentamen, april 2009.) Man har efter studier av beredskapen hos
Datorlaboration 2 Konfidensintervall & hypotesprövning
Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska
DATORÖVNING 4: DISKRETA
IDA/Statistik 2008-09-25 Annica Isaksson DATORÖVNING 4: DISKRETA SANNOLIKHETSFÖRDELNINGAR. I denna datorövning ska du illustrera olika sannolikhetsfördelningar samt beräkna sannolikheter i dessa m h a
Summor av slumpvariabler
1/22 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 8/2 2013 2/22 Dagens föreläsning Väntevärde och varians Vanliga kontinuerliga fördelningar Parkeringsplatsproblemet
Läs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:
Statistiska analyser C2 Inferensstatistik. Wieland Wermke
+ Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga
Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00
Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Statistik för Brandingenjörer. Laboration 1
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Statistik för Brandingenjörer Laboration 1 Beskrivande statistik VT 2012 2 En marknadsundersökning Bakgrund Uppgiften kommer att omfatta en del av en marknadsundersökning
Beskriv hur du, utan att räkna alla pärlor, kan göra en god uppskattning av hur många pärlor som finns av respektive färg. 2/0/0
Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En burk innehåller 10 000 pärlor i fyra olika färger. eskriv hur du, utan att räkna alla pärlor, kan göra en god uppskattning
Industriell matematik och statistik, LMA136 2013/14
Industriell matematik och statistik, LMA136 2013/14 14 Februari 2014 Disposition ion Funktioner av stokastiska variabler E[aX + b] = ae[x ] + b Var(aX + b) = a 2 Var(X ) E[g(X { )] = x i Ω g(x i)p(x =
Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:
Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1
Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett
Övningssamling Internationella ekonomprogrammet Moment 1
Övningssamling Internationella ekonomprogrammet Moment 1 1. I samband med surveyundersökningar förekommer det olika typer av fel. Redogör för innebörden av följande feltyper och förklara hur dessa typer
Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU
Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU KURSENS INNEHÅLL Statistiken ger en empirisk grund för ekonomin. I denna kurs betonas statistikens idémässiga bakgrund och
1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
36 poäng. Lägsta poäng för Godkänd 70 % av totalpoängen vilket motsvarar 25 poäng. Varje fråga är värd 2 poäng inga halva poäng delas ut.
Vetenskaplig teori och metod Provmoment: Tentamen 3 Ladokkod: VVT012 Tentamen ges för: SSK05 VHB 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2012-04-27 Tid: 09.00-11.00 Hjälpmedel: Inga hjälpmedel
Statistiska undersökningar
Arbetsgång vid statistiska undersökningar Problemformulering, målsättning Statistiska undersökningar Arbetsgången mm Definition av målpopulation Framställning av urvalsram Urval Utformning av mätinstrument
RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar
Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens
Lär lätt! Statistik - Kompendium
Björn Lantz Lär lätt! Statistik - Kompendium Studentia 006 Björn Lantz och Studentia Ladda ner kompendiet gratis på ISBN 87-7681-080-1 Studentia Innehållsförteckning Innehållsförteckning 1. Introduktion
Sänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Lär lätt! Statistik - Kompendium
Björn Lantz Lär lätt! Statistik - Kompendium Studentia 006 Björn Lantz och Studentia Ladda ner kompendiet gratis på ISBN 87-7681-080-1 Studentia Innehållsförteckning Innehållsförteckning 1. Introduktion
Statistik 1 för biologer, logopeder och psykologer
Statistik 1 för biologer, logopeder och psykologer Paul Blomstedt Innehåll 1 Inledning 2 2 Deskriptiv statistik 2 2.1 Variabler och datamaterial...................... 2 2.2 Tabulering och grask beskrivning.................
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:
Linjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER MÅNDAGEN DEN 26 AUGUSTI 203 KL 08.00 3.00. Examinator: Gunnar Englund tel. 073 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Tal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
Räkna med variation - Digitala uppgifter Studiematerial i sannolikhetslära och statistisk inferens. Lena Zetterqvist och Johan Lindström
Räkna med variation - Digitala uppgifter Studiematerial i sannolikhetslära och statistisk inferens Lena Zetterqvist och Johan Lindström 29 oktober 25 Innehåll Beskrivning av data 5 2 Grundläggande sannolikhetsteori
Tentamen för kursen Statististik för naturvetare 16 januari 2004 9 14
STOCKHOLMS UNIVERSITET MS1130 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 16 januari 2004 Tentamen för kursen Statististik för naturvetare 16 januari 2004 9 14 Examinator: Louise af Klintberg,
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Föreläsning 7 och 8: Regressionsanalys
Föreläsning 7 och 8: Pär Nyman par.nyman@statsvet.uu.se 12 september 2014-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.
Lärare 2. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 2 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2
Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Fredagen
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola
Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 4 april 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:
MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23
1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Gaussiska primtal. Christer Kiselman. Institut Mittag-Leffler & Uppsala universitet
195 Gaussiska primtal Christer Kiselman Institut Mittag-Leffler & Uppsala universitet 1. Beskrivning av uppgiften. De förslag som presenteras här kan behandlas på flera olika sätt. Ett första syfte är
6-3 Statistikgranskning. Namn:
6-3 Statistikgranskning. Namn: Inledning Du har nu lärt dig en hel del om statistik och om diagram. Eftersom statistik används i många sammanhang, ibland med syftet att framhäva en viss tendens eller utveckling,
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
STÄNG AV FÖNSTER. Regler FLAGGSPECTRUM I FLAGGSPECTRUM II FLAGGSPECTRUM III FLAGGSPECTRUM STJÄRNSPEL
Sivu 1/5 STÄNG AV FÖNSTER Regler FLAGGSPECTRUM I FLAGGSPECTRUM II FLAGGSPECTRUM III FLAGGSPECTRUM STJÄRNSPEL Ett spännande sätt att lära sig känna igen länder och huvudstäder. Ett utomordentligt kännetecken
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00
Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller
- ^^s^^^^'^^ Sannolihhet och statistik Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller chanser för att olika händelser ska inträffa.
Vara kommun Grundskoleundersökning 2014 Totalrapport. Föräldrar
Vara kommun Grundskoleundersökning Totalrapport Presentation Om undersökningen Förklaring av diagram Resultat Svarsfrekvens Per fråga NöjdSkolIndex (NSI) Om undersökningen Undersökningen är en totalundersökning
TNSL11 Kvantitativ Logistik
TENTAMEN TNSL11 Kvantitativ Logistik Datum: 25 mars 2013 Tid: 08:00 12:00 i TP56 Hjälpmedel: Hjälpmedel av alla slag, förutom kommunikationsutrustning (telefoner, datorer, och andra saker som kan ta emot
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas
Hemtjänsten 2012 2012-08-13. Svarsfrekvens 77 av 130 utdelade = 60 %
Hemtjänsten 2012 2012-08-13 Svarsfrekvens 77 av 130 utdelade = 60 % Bortfall: 3 av 77 Jag som har hemtjänst är: Bortfall: 1 av 77 Ålder Bortfall: 1 av 77 Jag som svarat på enkäten är: 1. Hur nöjd är du
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling