Storräkneövning: Sannolikhetslära

Storlek: px
Starta visningen från sidan:

Download "Storräkneövning: Sannolikhetslära"

Transkript

1 UPPSALA UNIVERSITET Matematiska institutionen Jakob Björnberg Sannolikhet och statistik Storräkneövning: Sannolikhetslära 1. (Tentamen, april 2009.) Man har efter studier av beredskapen hos en deltidsbrandkår funnit att sannolikheten att den är på väg fem minuter efter ett larm är 0.95 (måndag till fredag) respektive 0.90 (lördag eller söndag). Beräkna sannolikheten att den är på väg inom fem minuter en slumpvis vald veckodag. 2. (Tentamen, april 2009.) I en produktspecifikation skall anges den diametertjocklek x 0.90 sådan att i genomsnitt 90% av enheterna har en diameter mindre än denna. Variationen av diametrar hos produkten kan beskrivas av täthetsfunktionen 0 för övrigt. Bestäm a och x f X (x) = ax, 90 < x < 100, 3. (Tentamen, april 2009.) I ett betjäningssystem är tiden som åtgår för betjäning exponentialfördelad med väntevärdet 20 minuter. Alla tider kan anses vara oberoende. (a) Beräkna sannolikheten att en given kund får en betjäningstid längre än 40 minuter. (b) Beräkna sannolikheten att minst 4 av 5 inkomna kunder får en betjäningstid, som för var och en överstiger 40 minuter. 4. (Tentamen, april 2009.) I ett bostadsområde planeras för 1000 hushåll. Sannolikheten för att ett slumpmässigt valt hushåll skall ha ingen, en respektive två bilar är 0.4, 0.5 respektive 0.1. Man tänker bygga 725 parkeringsplatser. Beräkna sannolikheten att detta antal är tillräckligt. Antag oberoende mellan hushåll. 5. (Tentamen, april 2009.) Om standardavvikelsen vid en viss längdmätning är 0.01 mm, hur många gånger måste man då mäta för att få standardavvikelsen mm för medelvärdet av mätningarna? Antag oberoende mätningar. 6. (Tentamen, oktober 2010.) Ett företag producerar elektroniska reläer. Deras responstider är oberoende, normalfördelade med väntevärde 8 ms och standardavvikelse σ ms. Om responstiden för ett relä överstiger 9 ms anses det för trögt och skrotas. (a) Om σ = 0.5, hur stor är sannolikheten att ett givet relä skrotas? (b) Företaget vill reducera andelen för tröga reläer till maximalt 1% genom att förbättra precisionen i tillverkningen. Till vilket värde måste σ reduceras för att uppnå detta? (c) Antag att företaget lyckats reducera andelen reläer som skrotas till 1%. En månad plockas 50 reläer ut. Hur stor är sannolikheten att minst 3 av dessa är tröga? (d) Under samma antaganden, om 2000 reläer tillverkas vad är sannolikheten att minst 25 av dessa är tröga? 7. (Tentamen, oktober 2011.) Låt X 1,...,X 5 samt Y 1,...,Y 4 vara oberoende slumpvariabler, sådana att alla X i N(1,2) och alla Y i N( 2,1). Beräkna följande sannolikhet: P(X 1 + +X 5 > Y 1 + +Y 4 ).

2 8. (Tentamen, oktober 2011.) Vi har 10 oberoende, symmetriska slantar, och utför följande. Först singlar vi alla slantar en gång; sedan singlar vi på nytt alla de som visade krona efter första singlingen. Beräkna väntevärdet för det totala antalet klave man ser. 9. (Grimmett Stirzaker ) (a) Låt X ha fördelning Exp(λ). Visa att P(X > t+s X > t) = P(X > s). (b) Låt Y ha fördelning ffg(p). Visa att P(Y = n+k Y > n) = P(Y = k). 10. (Grimmett Stirzaker 4.5.4) Låt X och Y vara oberoendere[0,1] och låt U = min{x,y} och V = max{x,y}. Finn E(U) och E(V) och beräkna således C(U,V).

3 LÖSNINGAR 1. Inför händelserna A = Vald dag är helgdag, B = På väg inom fem minuter. Från texten följer P(A) = 2/7, P(B A) = 0.90, P(B A ) = 0.95). Sökt är P(B), vilken följer ur satsen om total sannolikhet: P(B) = P(B A)P(A)+P(B A c )P(A c ) = = Först måste täthetsfunktionen normeras så den verkligen blir en täthet, dvs. vi bestämmer a: 1 = f X(x)dx = axdx = [ ax2 2 ] = 950a a = 1/950. Integrering ger 0.90 = x f X (x)dx x 0.90 = (a) Inför X = Betjäningstid (minuter) för en kund, med täthetsfunktionen Det följer att P(X > 40) = 1 P(X 40) = 1 f X (x) = 1 20 e x/20, x > e x/20 dx = 1 (1 e 2 ) = (b) Låt Y = Antal inkomna kunder vars betjäningstid överstiger 40 minuter. Då gäller Y Bin(5,p) med p = enligt (a). Sökt sannolikhet: P(Y 4) = P(Y = 4)+P(Y = 5) = Låt X = Antal bilar i ett hushåll. Sannolikhetsfunktionen ges av x p(x) Man finner E[X] = = 0.7, V[X] = E[X 2 ] (E[X]) 2 ) = = Inför totala antalet bilar Y = Y 1 + +Y 1000, där E[Y] = = 700, V[Y] = = 410. Centrala gränsvärdessatsen ger att approximativt Y N(700, 410) och den sökta sannolikheten följer som P(Y 725) = Φ(( )/ 410) = Φ(1.23) = För oberoende s.v. X 1,...,X n med D[X] = σ gäller för X = 1 n (X 1 + +X n ) det välkända resultatet V[ X] = σ 2 /n, dvs. D[ X] = σ/ n. Vi skall alltså lösa = 0.01/ n, vilket ger n = Låt X i vara responstiden hos relä nr i. (a) Vi har att X i N(8,0.5 2 ) så Z i = (X i 8)/0.5 N(0,1); vidare är P(X i > 9) = P(Z i > 2) = 1 Φ(2) = (b) Vi har att X i N(8,σ 2 ) så Z i = (X i 8)/σ N(0,1). Vill ha 0.01 = P(X i > 9) = P(Z i > 1/σ). Så 1/σ = λ 0.01 = och därför krävs σ = (c) Om X betecknar antal tröga bland de 50 så är X Bin(50,0.01). Eftersom både p < 0.1 ochnp(1 p) < 0.5såanvändervi Poissonapproximation. DvsX Po(0.5). Så P(X 3) = 1 P(X = 0) P(X = 1) P(X = 2) 1 e 0.5 (0.375)

4 (d) Nu är X Bin(2000, 0.01) och eftersom np(1 p) > 5 så använder vi normalapproximation, dvs X N(np,np(1 p)) = N(20,19.8). Vi får att ( X 20 P(X 25) = P 5 ) 1 Φ(1.12) Vi har att X 1 + +X 5 N(5,10), Y 1 + +Y 4 N( 8,4) (linjärkombinationer av oberoende normalfördelade variabler blir normalfördelade). Det följer att Z = X 1 + +X 5 (Y 1 + +Y 4 ) N(13,14) (samma motivering som ovan), och därmed att Sökt sannolikhet: Z = Z N(0;1). P(Z > 0) = P(Z > 13/ 14) = Φ(3.47) Låt Y beteckna det totala antalet klave. Lösning 1: Ett mynt visar krona efter båda omgångarna med sannolikhet , och då mynten är oberoende betyder detta att Y Bin(10, ). Därför är E(Y) = 10 4 = 7.5. Lösning 2: Låt X 1 vara antal klave efter första kastet, och låt X 2 vara antal nya klave efter den andra kastomgången. Då är Y = X 1 +X 2 och X 1 Bin(10, 1 2 ). För varje utfall av X 1 är X 2 Bin(10 X 1, 1 2 ) med väntevärde 1 2 (10 X 1). Genom att summera över alla möjliga utfall för X 1 får vi att E(Y) = E(X 1 )+E(X 2 ) = 5+E( 1 2 (10 X 1)) = = 7.5. Obs! I lösning 2 är det inte korrekt att säga att X 2 Bin(5, 1 2 ), dvs man kan inte byta ut slumpvariabeln 10 X 1 mot dess väntevärde 5. Att man får rätt svar är ett sammanträffande. Att denna l sningsmetod är felaktig kan man se genom att betrakta fallet med 11 mynt, då man skulle fått X 2 Bin(5.5, 1 2 ), vilket är nonsense. Kommentar: väntevärdet av en diskret slumpvariabel behöver inte vara ett heltal. 9. (a) (b) Vi har att P(X > s+t X > t) = e λ(s+t) e λ(t) = e λs = P(X > s). P(Y = n+k Y > n) = P(Y = n+k) P(Y > n) = p(1 p)n+k 1. P(Y > n) Vi ser att P(Y > n) = P(Y = n+j) = p(1 p) n+j 1 j 1 j 1 = p(1 p) n (1 p) j = p(1 p)n 1 (1 p) = (1 p)n. j 0 Så P(Y = n+k Y > n) = (p(1 p) n+k 1 )((1 p) n ) = p(1 p) k 1 = P(Y = k).

5 10. Vi har att P(U > t) = P(X > t,y > t) = P(X > t)p(y > t) = 1 2t+t 2. Så U har fördelningsfunktion 2t t 2 (för 0 t 1) och därför täthet 2 2t (för 0 t 1). Så E(U) = 1 0 t(2 2t)dt = 1/3. Vidare är U +V = X +Y så E(V) = 1 E(U) = 2/3. Dessutom gäller UV = XY så E(UV) = E(XY) = E(X)E(Y) = 1/4 och därför är C(U,V) = E(UV) E(U)E(V) = 1/4 2/9 = 1/36.

Summor av slumpvariabler

Summor av slumpvariabler 1/22 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 8/2 2013 2/22 Dagens föreläsning Väntevärde och varians Vanliga kontinuerliga fördelningar Parkeringsplatsproblemet

Läs mer

Industriell matematik och statistik, LMA136 2013/14

Industriell matematik och statistik, LMA136 2013/14 Industriell matematik och statistik, LMA136 2013/14 14 Februari 2014 Disposition ion Funktioner av stokastiska variabler E[aX + b] = ae[x ] + b Var(aX + b) = a 2 Var(X ) E[g(X { )] = x i Ω g(x i)p(x =

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15 1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla

Läs mer

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

Tentamen MVE265 Matematisk statistik för V, 2013-01-19

Tentamen MVE265 Matematisk statistik för V, 2013-01-19 Tentamen MVE6 Matematisk statistik V, 03-0-9 Tentamen består av åtta uppgifter om totalt 0 poäng. Det krävs minst 0 poäng betyg 3, minst 30 poäng 4 och minst 40. Examinator: Ulla Blomqvist Hjälpmedel:

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

Tentamen i Matematisk statistik, LKT325, 2010-08-26

Tentamen i Matematisk statistik, LKT325, 2010-08-26 Tentamen i Matematisk statistik, LKT35, 010-08-6 Uppgift 1: Beräkna sannolikheten P(A B) om P(A C B) = 0.3 och P(B C ) = 0.6 Uppgift : Sannolikheten för att behöva kassera en balk p.g.a. dålig hållfasthet

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE3 Sannolihet, statisti och ris 215-6-4 l. 8.3-13.3 Examinator: Johan Jonasson, Matematisa vetensaper, Chalmers Telefonvat: Johan Jonasson, telefon: 76-985223 31-7723546 Hjälpmedel: Typgodänd

Läs mer

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:

Läs mer

5 Kontinuerliga stokastiska variabler

5 Kontinuerliga stokastiska variabler 5 Kontinuerliga stokastiska variabler Ex: X är livslängden av en glödlampa. Utfallsrummet är S = x : x 0}. X kan anta överuppräkneligt oändligt många olika värden. X är en kontinuerlig stokastisk variabel.

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Summor av slumpvariabler

Summor av slumpvariabler 1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss?

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss? 1 ÖVNINGAR I INDUKTIV LOGIK 1.1 En tärning kastas. Ange sannolikheten för att antalet ögon är a) 3 b) inte 3 c) 3 eller 5 d) jämnt e) mindre än 4 f) jämnt och mindre än 4 g) jämnt eller mindre än 4 h)

Läs mer

Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag

Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER MÅNDAGEN DEN 26 AUGUSTI 203 KL 08.00 3.00. Examinator: Gunnar Englund tel. 073 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns

Läs mer

Föreläsning 3. Sannolikhetsfördelningar

Föreläsning 3. Sannolikhetsfördelningar Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs

Läs mer

Tillämpad Matematik III Övningar i Statistik

Tillämpad Matematik III Övningar i Statistik Tillämpad Matematik III Övningar i Statistik (Med reservation för eventuella tryckfel.) Kap. Grundläggande sannolikhetsteori.. Drag utan återlägg gör att det nns 4 = (= m) möjliga och lika troliga utfall

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant?

(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant? LÖSNINGAR till tentamen: Statistik och sannolikhetslära (LMA12) Tid och plats: 8.3-12.3 den 24 augusti 215 Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 12 poäng, 4: 18 poäng, 5: 24

Läs mer

Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.

Läs mer

Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen?

Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen? Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001 1. Månadslönerna för 10 lärare vid en viss skola är 1 17 700 19 800 19 900 20 200 20 800 16 100 17 000 23 500 19 700 21 100 Beräkna medelvärdet,

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15 Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin Rolf Larsson rolf.larsson@math.uu.se Jesper Rydén jesper.ryden@math.uu.se Senast uppdaterad 27 januari 2016 Diskussionsproblem till Lektion 3

Läs mer

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005) Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) Formellsamling och teori Nästa varje ekva.on som vi använder under kursen finns I samlingen. Tricket i examen är hica räc metod/fördelning.ll

Läs mer

Stokastiska signaler. Mediesignaler

Stokastiska signaler. Mediesignaler Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet

Läs mer

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Hjälpmedel:'Valfri'räknare,'egenhändigt'handskriven'formelsamling'(4''A4Esidor'på'2'blad)' och'till'skrivningen'medhörande'tabeller.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

Läs mer

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK

Läs mer

0 om x < 0, F X (x) = c x. 1 om x 2.

0 om x < 0, F X (x) = c x. 1 om x 2. Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.

Läs mer

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 13. STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR Hittills har vi betraktat

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}

Läs mer

Statistisk undersökningsmetodik (Pol. kand.)

Statistisk undersökningsmetodik (Pol. kand.) TENTAMEN Tentamensdatum 2008-10-02 Statistisk undersökningsmetodik (Pol. kand.) Namn:.. Personnr:.. Tentakod: Obs! Var noga med att skriva din tentakod på varje lösningsblad som du lämnar in. Skrivtid

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

Diskreta slumpvariabler

Diskreta slumpvariabler 1/20 Diskreta slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/1 2013 2/20 Dagens föreläsning En maskin gör fel ibland! En man berättar att han har minst en

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3

Läs mer

Tentamen L9MA30, LGMA30

Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 017 Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 017-10-0 kl. 08:30-1:30 Examinator:

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts

Läs mer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Thommy erlinger Innehåll 1 Beskrivande statistik 3 1.1 Medelvärdeochstandardavvikelse... 3 1.2 Chebyshevsregel... 3 1.3 Empiriskaregeln(normalfördelningsregeln)...

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.

Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik. UPPSALA UNIVERSITET Matematiska institutionen Erik Broman, Jesper Rydén TENTAMEN I MATEMATISK STATISTIK Sannolikhet och statistik 1MS5 214-1-11 Skrivtid: 8.-13.. För betygen 3, 4 resp. 5 krävs 18, 25 resp.

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable

Läs mer

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

Samverkande Expertnät

Samverkande Expertnät 1 Samverkande Expertnät 2 3 1 2 3 Parallella nätverk Sammanvägning av svaren Två olika fördelar Utjämna egenheter hos nätverken Låt nätverken specialisera sig Egenskaper hos ett enkelt nätverk Överträning

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

5. BERÄKNING AV SANNOLIKHETER

5. BERÄKNING AV SANNOLIKHETER 5. BERÄKNING V SNNOLIKHETER 5.1 dditionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Robert Lundqvist, tel

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är

Läs mer

Matematisk statistik 9 hp Föreläsning 4: Flerdim

Matematisk statistik 9 hp Föreläsning 4: Flerdim Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler

Läs mer

Lär lätt! Statistik - Kompendium

Lär lätt! Statistik - Kompendium Björn Lantz Lär lätt! Statistik - Kompendium Studentia 006 Björn Lantz och Studentia Ladda ner kompendiet gratis på ISBN 87-7681-080-1 Studentia Innehållsförteckning Innehållsförteckning 1. Introduktion

Läs mer

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Flerdimensionella Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Flerdimensionella Ett slumpförsök kan ge upphov till flera (s.v.): kast med

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Allmän information... sid 3 BM-Mattan... sid 3 Sparstöd... sid 5

Allmän information... sid 3 BM-Mattan... sid 3 Sparstöd... sid 5 Överkantsarmering Innehållsförteckning Allmän information... sid 3 BM-Mattan... sid 3 Teknisk information Dimensioneringsdiagram Sparstöd... sid 5 Överkantsarmering med sparstöd Överkantsarmering Att använda

Läs mer

Problemdel 1: Uppgift 1

Problemdel 1: Uppgift 1 STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y

Läs mer

Antal ögon Vinst (kr) Detta leder till följande uttryck E(x) = x x p X(x) x f X(x)dx

Antal ögon Vinst (kr) Detta leder till följande uttryck E(x) = x x p X(x) x f X(x)dx 8. Väntevärde Exempel. Banken ordnar ett tärningsspel där de spelande erlägger en insats på 5 kr/kast. Vinsten är beroende på hur många ögon tärningen visar: Antal ögon 3 4 5 6 Vinst (kr) 3 4 5 6 7 8 Hur

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer