SF1901: Sannolikhetslära och statistik
|
|
- Malin Gunnarsson
- för 6 år sedan
- Visningar:
Transkript
1 SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski Jan Grandell & Timo Koski () Matematisk statistik / 38
2 Standardiserad normalfördelning, N(0, 1) Definition En s.v. Z säges vara standardiserad normalfördelad om den är N(0, 1)-fördelad, dvs. om den har täthetsfunktionen ϕ(z) = 1 2π e z2 /2. Dess fördelningsfunktion betecknas med Φ(z), dvs. Φ(z) = z 1 2π e x2 /2 dx. Jan Grandell & Timo Koski () Matematisk statistik / 38
3 Standardiserad normalfördelning, N(0, 1) ϕ(z) = 1 2π e z2 /2. Jan Grandell & Timo Koski () Matematisk statistik / 38
4 En bilaga i fin stil (kan överhoppas) Hur vet vi att ϕ(z) = 1 2π e z2 /2 är en sannolikhetstäthet? Dvs. varför gäller det att ϕ(z)dz = 1. Svaret ges t.ex. i Eike Petermann: Analytiska metoder II, Studentlitteratur 2002, sid. 235, Ex. 9.14, Anmärkning 9.6 eller bilagan nedan Jan Grandell & Timo Koski () Matematisk statistik / 38
5 Bilaga (ur Eike Petermann: Analytiska metoder II) : ϕ(z)dz = 1. Jan Grandell & Timo Koski () Matematisk statistik / 38
6 Bilaga : ϕ(z)dz = 1. Jan Grandell & Timo Koski () Matematisk statistik / 38
7 Sista sidan i bilagan : ϕ(z)dz = 1. Jan Grandell & Timo Koski () Matematisk statistik / 38
8 Standardiserad normalfördelning, N(0, 1) Fördelningsfunktionen betecknas med Φ(z), dvs. Φ(z) = Av symmetriskäl gäller klart att z 1 2π e x2 /2 dx. Φ(0) = 1 2. Jan Grandell & Timo Koski () Matematisk statistik / 38
9 Beräkning av Φ(z): MATLAB Ett problem är att fördelningsfunktionen inte kan ges på en sluten analytisk form. Det är dock lätt att numeriskt beräkna fördelningsfunktionen och vi använder programvara för beräkning av Φ(x). I MATLAB Statistics Toolbox beräknas Φ(1) av : >> normcdf(1, 0, 1) ans = Jan Grandell & Timo Koski () Matematisk statistik / 38
10 Beräkning av Φ(z): TI-82 STATS Ta fram menyn DISTR med tangentsekvensen 2nd DISTR. Gå ned till normalcdf(. Då beräknas Φ(1) av 1 : normcdf( 1E99, 1, 0, 1) Man kan även skriva (d.v.s. 0 och 1 är defaultvärden) normcdf( 1E 99, 1) E tas fram med tangentsekvensen 2ND E Jan Grandell & Timo Koski () Matematisk statistik / 38
11 Tabellen för Φ(x) ur kursens formelsamling Vi slår upp Φ(1) som.8413 Jan Grandell & Timo Koski () Matematisk statistik / 38
12 Φ( z) = 1 Φ(z). Vi observerar att ϕ( z) = ϕ(z). Φ(z) är tabulerad i kursens formelsamling endast för z 0. Vi har dock z z Φ( z) = ϕ(x) dx = [y = x] = ϕ( y) dy Sats = z ϕ(y) dy = 1 Φ(z). Φ( z) = 1 Φ(z). Jan Grandell & Timo Koski () Matematisk statistik / 38
13 Z N(0, 1), E(Z), V(Z) Om Z är N(0, 1)-fördelad, så kan man visa att E(Z) = 0 (ty ϕ( z) = ϕ(z)) V (Z) = 1. Jan Grandell & Timo Koski () Matematisk statistik / 38
14 Kvantiler När vi kommer till statistikdelen av kursen behöver vi ofta lösa ekvationer av följande slag: Bestäm z så att vi för givet α har P(Z z) = 1 α; P(Z > z) = 1 α; P( z < Z z) = 1 α. För att lösa sådana ekvationer inför vi α-kvantilen λ α definierad av P(Z > λ α ) = α eller α = 1 Φ(λ α ). Jan Grandell & Timo Koski () Matematisk statistik / 38
15 Kvantiler i TI-82 STATS invnorm( Vi vill ta fram λ 0.05 definierad av ekvationen P(Z > λ 0.05 ) = 0.05 eller 0.05 = 1 Φ(λ 0.05 ) Φ(λ 0.05 ) = 0.95 Vi knappar in i räknären (meny DISTR) invnorm(0.95, 0, 1) som ger lösningen ( ) Jan Grandell & Timo Koski () Matematisk statistik / 38
16 Kursens formelsamling: kvantiler Tabell 2 i kursens formelsamling ger λ 0.05 = Jan Grandell & Timo Koski () Matematisk statistik / 38
17 Kvantiler (forts.) α = 1 Φ(λ α ). Det är då bra att observera att 1 α = 1 Φ(λ 1 α ) α = Φ(λ 1 α ) α = 1 Φ( λ 1 α ), vilket ger λ 1 α = λ α. Jan Grandell & Timo Koski () Matematisk statistik / 38
18 Allmän normalfördelning Definition En s.v. X säges vara N(µ, σ)-fördelad, där µ reell och σ > 0, om Z = X µ σ är N(0, 1)-fördelad. Jan Grandell & Timo Koski () Matematisk statistik / 38
19 Allmän normalfördelning Sats Låt X vara N(µ, σ)-fördelad. Då gäller f X (x) = 1 ( ) x µ σ ϕ = 1 σ σ /2σ2 e (x µ)2 2π och ( ) x µ F X (x) = Φ. σ Jan Grandell & Timo Koski () Matematisk statistik / 38
20 Allmän normalfördelning Bevis. Vi har ( X µ F X (x) = P(X x) = P σ ( = P Z x µ ) ( x µ = Φ Derivation ger f X (x) = 1 σ ϕ ( x µ σ σ ). σ x µ ) σ ). Jan Grandell & Timo Koski () Matematisk statistik / 38
21 Normalfördelning X N(µ, σ) med f X (x) = 1 σ /2σ2 e (x µ)2 2π där µ godtycklig konstant och σ > 0. I figuren för f X (x) har vi µ = 1, σ = 1 Jan Grandell & Timo Koski () Matematisk statistik / 38
22 Normalfördelning (även känd som Gaussfördelning efter C.F. Gauss, ) Jan Grandell & Timo Koski () Matematisk statistik / 38
23 Normalfördelning i kinetiska gasteorin X N(0, σ) med m /2k f X (x) = B T 2πk B T e mx2 k d.v.s. σ = B T m, k B = Boltzmans konstant, T = temperatur, m = partikelns massa. the fraction of particles in with velocities in the x-direction within x, x + dx =f X (x)dx.. Jan Grandell & Timo Koski () Matematisk statistik / 38
24 En viktig regel Beviset ovan innehåller en viktig räkneregel. Om X är N(µ, σ)-fördelad, så gäller det att ( ) x µ F X (x) = P(X x) = Φ. σ Man kan m.a.o. använda tabellen för Φ(x) även för att beräkna F X (x) för X N(µ, σ). Jan Grandell & Timo Koski () Matematisk statistik / 38
25 TI-82 STATS Smidigare än med regeln ovan och tabellen kan vi beräkna, om X N(µ, σ), sannolikheten F X (x) = P(X x) som normcdf( 1E99, x, µ, σ) Till exempel, om X N(2, 2) och beräknas P(0 X 3.5) med TI-82 STATS som normcdf(0, 3.5, 2, 2) Jan Grandell & Timo Koski () Matematisk statistik / 38
26 Allmän normalfördelning Sats Om X är N(µ, σ)-fördelad så gäller E(X) = µ och V (X) = σ 2. Bevis. Vi ska nu se hur listig definitionen är! X = σz + µ E(X) = σe(z) + µ = 0 + µ = µ V (X) = σ 2 V (Z) + 0 = σ 2. Jan Grandell & Timo Koski () Matematisk statistik / 38
27 Täthetsfunktionerna för N(0, 1) och N(1, 1) och N(0, 1) och N(0, 2) (från vänster till höger) Jan Grandell & Timo Koski () Matematisk statistik / 38
28 Allmän normalfördelning Sats Låt X vara N(µ, σ)-fördelad och sätt Y = ax + b. Då gäller det att Y är N(aµ + b, a σ)-fördelad. Bevis. Från definitionen följer att X = µ + σz där Z är N(0, 1)-fördelad. Detta ger Y = ax + b = a(µ + σz) + b = aµ + b + aσz Y (aµ + b) = Z. aσ Om a > 0 följer satsen. Om a < 0 utnyttjar vi att Z och Z har samma fördelning. Jan Grandell & Timo Koski () Matematisk statistik / 38
29 Summan av oberoende normalfördelade variabler Sats Om X är N(µ X, σ X )-fördelad, Y är N(µ Y, σ Y )-fördelad och X och Y är oberoende så gäller att ( ) X + Y är N µ X + µ Y, σx 2 + σ2 Y -fördelad och ( ) X Y är N µ X µ Y, σx 2 + σ2 Y -fördelad. Jan Grandell & Timo Koski () Matematisk statistik / 38
30 Repetition om väntevärden Återkalla i minnet att Låt X och Y vara två oberoende (okorrelerade räcker) s.v. Då gäller E(X + Y ) = E(X) + E(Y ) V (X + Y ) = V (X) + V (Y ) E(X Y ) = E(X) E(Y ) V (X Y ) = V (X) + V (Y ). Det nya är att vi kan ge fördelningen för summan av oberoende normalfördelade variabler Jan Grandell & Timo Koski () Matematisk statistik / 38
31 Summan av oberoende normalfördelade variabler Sats Låt X 1,..., X n vara oberoende och N(µ 1, σ 1 ),..., N(µ n, σ n ). Då gäller att ( n n n ) c k X k är N c k µ k, ck 2σ2 k -fördelad. k=1 k=1 k=1 Allmän regel: Linjärkombinationer av oberoende normalfördelade stokastiska variabler är normalfördelade med rätt väntevärde och rätt standardavvikelse. Jan Grandell & Timo Koski () Matematisk statistik / 38
32 I förra föreläsningen Sats Låt X 1,..., X n vara oberoende (okorrelerade räcker) s.v. och sätt Y = c 1 X c n X n. Då gäller och E(Y ) = c 1 E(X 1 ) c n E(X n ) V (Y ) = c 2 1V (X 1 ) c 2 nv (X n ) Det nya är att vi för linjärkombinationer av oberoende normalfördelade stokastiska variabler kan ge hela fördelningen. Jan Grandell & Timo Koski () Matematisk statistik / 38
33 Aritmetiska medelvärdet Följdsats Låt X 1, X 2,..., X n vara oberoende och N(µ, σ)-fördelade s.v. Då gäller att ( ) σ X är N µ, -fördelad. n Återkalla i minnet: Sats Låt X 1, X 2,..., X n vara oberoende och likafördelade s.v. med väntevärde µ och standardavvikelse σ. Då gäller att E(X) = µ, V (X) = σ2 n och D(X) = σ n. Jan Grandell & Timo Koski () Matematisk statistik / 38
34 Centrala gränsvärdessatsen Vi har sett några exempel på att normalfördelningen har trevliga statistiska egenskaper. Detta skulle vi inte ha så stor glädje av, om normalfördelningen inte dessutom var vanligt förekommande. Centrala gränsvärdessatsen CGS, som är den huvudsakliga motiveringen för normalfördelningen, kan utan vidare sägas vara ett av sannolikhetsteorins och statistikens allra viktigaste resultat. Sats (CGS) Låt X 1, X 2,... vara oberoende och lika fördelade s.v. med väntevärde µ och standardavvikelse σ. Då gäller att ( n ) P i=1 X i nµ σ x Φ(x) då n. n Jan Grandell & Timo Koski () Matematisk statistik / 38
35 CGS Ofta uttrycker man slutsatsen i CGS som att n i=1 X i nµ σ n är approximativt N(0, 1)-fördelad eller att n X i är approximativt N ( nµ, σ n ) -fördelad. i=1 Jan Grandell & Timo Koski () Matematisk statistik / 38
36 CGS En, för statistiken mycket vanlig användning av CGS är följande: Följdsats Låt X 1, X 2,... vara oberoende och lika fördelade s.v. med väntevärde µ och standardavvikelse σ. Då gäller att ( ) ( ) b µ a µ P(a < X b) Φ σ/ Φ n σ/ n om n är tillräckligt stort. Jan Grandell & Timo Koski () Matematisk statistik / 38
37 CGS Det är tyvärr inte möjligt att ge några generella och enkla tumregler om hur stort n måste vara för att normalapproximationen ska vara användbar. Detta beror på hur normalliknande de enskilda variablerna X k är. Om X k na är normalfördelade så gäller ju CGS för alla n. En tumregel är att om X k na är någorlunda symmetriskt fördelade så räcker ganska små n, säg något tiotal. Om X k na är påtagligt skevt fördelade så behöver n var något eller i värsta fall några hundratal. Jan Grandell & Timo Koski () Matematisk statistik / 38
38 CGS Det är svårt att formulera strikt, men det räcker i CGS att X k na är någorlunda oberoende och någorlunda lika fördelade. Med någorlunda lika fördelade menas framförallt att det inte finns vissa X k som är mycket dominerande. Detta innebär att mätfel i välgjorda försök kan anses vara approximativt normalfördelade. I mindre välgjorda försök kan det däremot mycket väl finnas någon dominerande felkälla som inte alls behöver vara approximativt normalfördelad. Jan Grandell & Timo Koski () Matematisk statistik / 38
39 Binomialfördelningen Antag att vi gör ett försök där en händelse A, med sannolikheten p = P(A), kan inträffa. Vi upprepar försöken n gånger, där försöken är oberoende. Sätt X = antalet gånger som A inträffar i de n försöken. Vi säger då att X är binomialfördelad med parametrarna n och p, eller kortare att X är Bin(n, p)-fördelad. Vi har ( ) n p X (k) = p k q n k, för k = 0,..., n, k där q = 1 p. Jan Grandell & Timo Koski () Matematisk statistik / 38
40 X Bin(n, p), X = U U n Låt U 1,..., U n vara s.v. definierade av { 0 om A inträffar i försök nummer i, U i = 1 om A inträffar i försök nummer i. Lite eftertanke ger att U 1,..., U n är oberoende och att X = U U n. Jan Grandell & Timo Koski () Matematisk statistik / 38
41 X Bin(n, p), X = U U n Då och E(U i ) = 0 (1 p) + 1 p = p V (U 1 ) = E(U 2 i ) E(U i ) 2 = E(U i ) E(U i ) 2 = p p 2 = p(1 p) så följer E(X) = ne(u i ) = np och V (X) = nv (U i ) = npq. Jan Grandell & Timo Koski () Matematisk statistik / 38
42 Bin(n, p) approximativt N(np, npq)-fördelad Av Xs representation som en summa följer att CGS kan tillämpas. Sats Om X är Bin(n, p)-fördelad med npq 10 så är X approximativt N(np, npq)-fördelad. Detta innebär att } P(X k) P(X < k) ( ) k np Φ. npq Med halvkorrektion menas att vi använder följande approximation: ( k P(X k) Φ np ), npq ( k 1 2 P(X < k) Φ np ). npq Jan Grandell & Timo Koski () Matematisk statistik / 38
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.
SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
SF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
TAMS79: Föreläsning 6. Normalfördelning
TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
(x) = F X. och kvantiler
Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Föreläsningsanteckningar i Matematisk Statistik. Jan Grandell
Föreläsningsanteckningar i Matematisk Statistik Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas som kursmaterial.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
FÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Föreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
Summor av slumpvariabler
1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Stokastiska vektorer
TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Repetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Anna Lindgren 4+5 oktober 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F8: Binomial och Poisson 1/18 N(μ, σ)
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:
Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 1:A JUNI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel: miniräknare,
FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski
FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem
en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.
February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning
Väntevärde och varians
TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Tentamen i matematisk statistik (92MA31, STN2) kl 08 12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Centrala gränsvärdessatsen (CGS). Approximationer
TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende
Introduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
F9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Thomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna
a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Transformer i sannolikhetsteori
Transformer i sannolikhetsteori Joakim Lübeck 28-11-13 För dig som läst eller läser sannolikhetsteori (fram till och med normalfördelningen) och läst eller läser system och transformer (till och med fouriertransform)
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 8 Johan Lindström 9 oktober 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F8 1/26 process Johan Lindström - johanl@maths.lth.se FMSF45/MASB3
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för
SF1901: Medelfel, felfortplantning
SF1901: Medelfel, felfortplantning Jan Grandell & Timo Koski 15.09.2011 Jan Grandell & Timo Koski () Matematisk statistik 15.09.2011 1 / 14 Felfortplantning Felfortplantning kallas propagation of error
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...
Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Bengt Ringnér. October 30, 2006
Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Bengt Ringnér. September 20, Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07.
Väntevärden Bengt Ringnér September 0, 007 1 Inledning Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07. Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator
Föreläsning 4, Matematisk statistik för M
Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med
b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)
Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna
b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Stokastiska vektorer och multivariat normalfördelning
Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen