SF1901: Sannolikhetslära och statistik
|
|
- Barbro Bergman
- för 6 år sedan
- Visningar:
Transkript
1 SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski Jan Grandell & Timo Koski () Matematisk statistik / 45
2 Stokastiska variabler: inledning I nästan alla situationer som vi betraktar, kommer resultaten av slumpförsöken att vara tal, kontinerliga mätvärden eller antal. Det är praktiskt att anpassa beteckningarna till detta. Definition En stokastisk variabel s.v. (eller en slumpvariabel) X är en funktion från Ω till reella linjen. Lite löst kommer vi att uppfatta X som en beteckning för resultatet av ett slumpförsök. Jan Grandell & Timo Koski () Matematisk statistik / 45
3 Stokastiska variabler Ω X X(ω) ω Jan Grandell & Timo Koski () Matematisk statistik / 45
4 Stokastiska variabler: inledning Låt X vara en stokastisk variabel. Det mest allmänna sättet att beskriva X, dvs. hur X varierar, är att ange dess fördelningsfunktion. Definition Fördelningsfunktionen F X (x) till en s.v. X definieras av F X (x) = P(X x). Jan Grandell & Timo Koski () Matematisk statistik / 45
5 Stokastiska variabler: inledning En fördelningsfunktion F X (x) har följande egenskaper: ) F X (x) är icke-avtagande ; 2) F X (x) då x ; 3) F X (x) då x ; 4) F X (x) är högerkontinuerlig. d.v.s. x x 2 F X (x ) F X (x 2 ) Jan Grandell & Timo Koski () Matematisk statistik / 45
6 Beräkning av sannolikheter Låt X vara en stokastisk variabel. F X (x) = P(X x). Då fås P(a < X b) = P(X b) P(X a) = F X (b) F X (a) Sats P(a < X b) = F X (b) F X (a) Jan Grandell & Timo Koski () Matematisk statistik / 45
7 Stokastiska variabler: Diskret stokastisk variabel Det är lämpligt att skilja på fallen då vår stokastiska variabel representerar kontinuerliga mätvärden eller antal. Vi ska nu betrakta fallet med antal. Definition En s.v. X säges vara diskret om den kan anta ett ändligt eller uppräkneligt oändligt antal olika värden. Det viktiga är att de möjliga värdena ligger i en ändlig eller högst uppräknelig mängd. Oftast tar en diskret s.v. icke-negativa heltalsvärden räknar ett antal. Vi kommer att förutsätta detta, om vi inte explicit säger något annat. Jan Grandell & Timo Koski () Matematisk statistik / 45
8 Diskreta stokastiska variabler Definition För en diskret s.v. definieras sannolikhetsfunktionen p X (k) av p X (k) = P(X = k). Om X beskriver ett tärningskast gäller således { p X (k) = 6 för k =, 2, 3, 4, 5, 6 för övriga värden på k. Gör vi nu slumpförsöket att på måfå dra en av 6 lappar med talen, 2, 3, 4, 5 eller 6, så får vi samma s.v. som i tärningskasten. Jan Grandell & Timo Koski () Matematisk statistik / 45
9 En sannolikhetsfunktion p (2) X p (6) X p () X p (3) X p (4) X p (5) X Jan Grandell & Timo Koski () Matematisk statistik / 45
10 Diskreta stokastiska variabler Relationen mellan sannolikhetsfunktionen och fördelningsfunktionen för en diskret stokastisk variabel fås av sambanden och F X (x) = p X (j), där [x] betyder heltalsdelen av x, j [x] Det följer av detta att p X (k) = F X (k) F X (k ). p X (k) och p X (k) =. Jan Grandell & Timo Koski () Matematisk statistik / 45
11 En fördelningsfunktion F (x) X p (4) X p (2) X p (3) = F (4) F (3) X X X p () X obs Ej samma sannolikheter som i föregående figur om sannolikhetsfunktion Jan Grandell & Timo Koski () Matematisk statistik / 45
12 Beräkning av sannolikheter Sats P(a < X b) = F X (b) F X (a) Om X är diskret, så fås, om a och b är positiva heltal, att P(a < X b) = F X (b) F X (a) = p X (j) p X (j) j b j a = b p X (j). j=a+ Jan Grandell & Timo Koski () Matematisk statistik / 45
13 Beräkning av sannolikheter Om X är diskret, och a och b är positiva heltal, gäller det att P(a X b) = P(a < X b) + P (X = a) = F X (b) F X (a) + P (X = a) = = b p X (j). j=a b p X (j) + p X (a) j=a+ obs! Om X är diskret, och p X (a) >, så gäller alltså enligt ovananförda att P(a < X b) = P(a X b) Jan Grandell & Timo Koski () Matematisk statistik / 45
14 Beräkning av sannolikheter X är diskret, och b är ett positivt heltal, P(X b) = P(X < b) = P(X b ) = F X (b ) = p X (j) j b P(X > b) = P(X b) = F X (b) Jan Grandell & Timo Koski () Matematisk statistik / 45
15 Beräkning av sannolikheter: allmänt A en delmängd av den reella axeln, P(X A) = sannolikheten för att X antar ett värde i A. Om X diskret: P(X A) = p X (j) j A Jan Grandell & Timo Koski () Matematisk statistik / 45
16 Kast av ett häftstift (= Thumbtack på (amerikansk) engelska) Slumpexperiment: Kast av ett häftstift. Om det landar på spetsen som i bilden ovan, säger vi att en etta () inträffar. Vi säger att en nolla () inträffar om häftstiftet landar på hatten. Jan Grandell & Timo Koski () Matematisk statistik / 45
17 Tre kast av ett häftstift: utfallsrummet som ett träddiagram Kast Kast 2 Kast 3 ω = ( ) ω 2 = () ω 3 = () ω 4 = ( ) ω 5 = () ω 6 =() ω 7 = () ω 8 =() Antalet utfall= 2 3 Jan Grandell & Timo Koski () Matematisk statistik / 45
18 Tre oberoende kast av ett häftstift: sannolikheter Kast Kast 2 Kast 3 p p p ω ω 2 P( ω ) = P( ω 2 ) = p 3 2 p ( p) p p p p ω 3 ω 4 P( ω 3 ) P( ω 4 ) = = 2 p ( p) p ( p) 2 3 p p p ω 5 ω 6 P( ω 5 ) = P( ω6 ) = 2 p ( p) p ( p) 2 p p p p ω 7 ω 8 P( ω 7 ) = P( ω ) = 8 p ( p) 2 ( p) 3 P(en nolla ()) = p, P(en etta ()) = p. Jan Grandell & Timo Koski () Matematisk statistik / 45
19 Tre oberoende kast av ett häftstift: en stokastisk variabel Kast Kast 2 Kast 3 ω = ( ) ω 2 = () ω 3 = () ω 4 = ( ) ω 5 = () ω 6 =() ω ω 7 8 = () =() X = antalet ettor i tre oberoende kast av ett häftstift. X (ω ) = 3,X (ω 2 ) = X (ω 3 ) = X (ω 5 ) = 2, X (ω 4 ) = X (ω 6 ) = X (ω 7 ) =, X (ω 8 ) =. Jan Grandell & Timo Koski () Matematisk statistik / 45
20 Tre oberoende kast av ett häftstift: sannolikhetsfunktion för antalet ettor X (ω ) = 3,X (ω 2 ) = X (ω 3 ) = X (ω 5 ) = 2, X (ω 4 ) = X (ω 6 ) = X (ω 7 ) =, X (ω 8 ) =. P (X = 3) = P (ω ) = p 3, P (X = 2) = P (ω 2 ) + P (ω 3 ) + P (ω 5 ) = 3p 2 ( p) P (X = ) = P (ω 4 ) + P (ω 6 ) + P (ω 7 ) = 3p( p) 2 P (X = ) = P (ω 8 ) = ( p) 3 Jan Grandell & Timo Koski () Matematisk statistik / 45
21 Tre oberoende kast av ett häftstift: sannolikhetsfunktion för antalet ettor Vi omskriver dessa med hjälp av binomialkoefficienterna: ( ) 3 P (X = 3) = p 3 = p 3 ( p) 3 ( ) 3 P (X = 2) = 3p 2 ( p) = p 2 ( p) 2 ( ) 3 P (X = ) = 3p( p) 2 = p( p) 2 ( ) 3 P (X = ) = ( p) 3 eller med en enda formel P (X = k) = ( ) 3 p k ( p) 3 k,, k =,, 2, 3. k Denna är sannolikhetsfunktionen för binomialfördelningen med parametrarna 3 och p. Jan Grandell & Timo Koski () Matematisk statistik / 45
22 Diskreta st. v:er: Binomialfördelningen Definition En diskret s.v. X säges vara binomialfördelad med parametrarna n och p, Bin(n, p)-fördelad, om ( ) n p X (k) = p k ( p) n k, för k =,,..., n. k Vi skriver detta med X Bin(n, p). Jan Grandell & Timo Koski () Matematisk statistik / 45
23 Diskreta st. v:er: Poissonfördelningen Ofta när det är rimligt att anta att en s.v. X är Bin(n, p)-fördelad, så är det även rimligt att anta att p är liten och att n är stor. Låt oss anta att p = µ/n, där n är stor men µ är lagom. Då gäller ( ) n p X (k) = p k ( p) n k n(n )... (n k + ) ( µ ) k ( = µ ) n k k k! n n = µk ( µ k! n ) n n(n )... (n k + ) }{{} n k µ }{{}}{{ n } e µ ( ) k µk k! e µ. Jan Grandell & Timo Koski () Matematisk statistik / 45
24 Diskreta st. v:er: Poissonfördelningen Definition En diskret s.v. X säges vara Poissonfördelad med parameter µ, Po(µ)-fördelad, om Vi skriver detta med X Po(µ). p X (k) = µk k! e µ, för k =,, Jan Grandell & Timo Koski () Matematisk statistik / 45
25 Sannolikhetsfunktionerna för Po(2) och Po() Po(2), Po() Jan Grandell & Timo Koski () Matematisk statistik / 45
26 Singla en slant Jan Grandell & Timo Koski () Matematisk statistik / 45
27 En urnmodell: Dragning utan återläggning I en urna finns kulor av två slag: v vita och s svarta. Drag n kulor ur urnan slumpmässigt och så att en kula som dragits inte stoppas tillbaka. dvs dragning utan återläggning. Sätt X = Man får k vita kulor i urvalet. Välj Ω: Alla uppsättningar om n kulor utan hänsyn till ordning. Då fås: och således ( ) v + s m = n och g = ( v s ) P(X = k) = k)( n k ). ( v+s n ( )( ) v s k n k Jan Grandell & Timo Koski () Matematisk statistik / 45
28 Hypergeometrisk fördelning, Hyp(N, n, p) Definition Om den st.v. X har sannolikhetsfunktionen ( v s ) p X (k) = k)( n k ). ( v+s n där k har värden sådana att k v, n k s, så säges X vara hypergeometriskt fördelad. Vi sätter N = v + s och p = v/(v + s) och skriver X Hyp(N, n, p). Jan Grandell & Timo Koski () Matematisk statistik / 45
29 Kontinuerlig stokastisk variabel Här kan vi tyvärr inte ge definitionen i termer av den stokastiska variabeln själv. Det räcker inte att säga att X kan ta ett överuppräkneligt antal värden. Vi får därför ge definitionen i termer av fördelningsfunktionen, som ju är den allmännaste beskrivningen av en s.v. Definition En s.v. X säges vara kontinuerlig om dess fördelningsfunktion har framställningen F X (x) = x f X (t) dt för någon funktion f X (x). Funktionen f X (x) kallas täthetsfunktionen för X. Omvänt gäller att f X (x) = F X (x). Jan Grandell & Timo Koski () Matematisk statistik / 45
30 Kontinuerlig stokastisk variabel Täthetsfunktionen kan inte direkt tolkas som en sannolikhet, men vi har, för små värden på h, P(x < X x + h) = F X (x + h) F X (x) = x+h x f X (t) dt h f X (x). Jan Grandell & Timo Koski () Matematisk statistik / 45
31 Beräkning av sannolikheter Låt X vara en kontinuerlig stokastisk variabel. a < b är reella tal, P(a < X b) = F X (b) F X (a) = = b a b f X (t) dt a f X (t) dt f X (t) dt Jan Grandell & Timo Koski () Matematisk statistik / 45
32 Beräkning av sannolikheter Låt X vara en kontinuerlig stokastisk variabel. a < b är reella tal Men för h > P(a X b) = F X (b) F X (a) + P (X = a) P (X = a) = lim h P(a h < X a +h) = lim h (F X (a + h) F X (a h)) = ty F X (x) är kontinuerlig (och därmed högerkontinuerlig). Jan Grandell & Timo Koski () Matematisk statistik / 45
33 Beräkning av sannolikheter Med andra ord, om X är en kontinuerlig stokastisk variabel och a < b är reella tal, Sats P(a X b) = P(a < X b) = b a f X (t) dt. Jan Grandell & Timo Koski () Matematisk statistik / 45
34 Beräkning av sannolikheter: arean under kruvan P(a < X b) = F X (b) F X (a) = b a f X (t) dt. Jan Grandell & Timo Koski () Matematisk statistik / 45
35 Beräkning av sannolikheter Om X är en kontinuerlig stokastisk variabel och b är ett reellt tal, P(X > b) = P(X b) = P(X < b) = P(X b) dvs. = F X (b) = = b b f X (t) dt f X (t) dt f X (t) dt. P(X > b) = P(X b) = b f X (t) dt. Jan Grandell & Timo Koski () Matematisk statistik / 45
36 Kvantil, median Ett par begrepp: Definition Lösningen till ekvationen F X (x) = α kallas α-kvantilen till X och betecknas med x α. x.5 kallas för medianen och är således det värde som överskrides med samma sannolikhet som det underskrides. Jan Grandell & Timo Koski () Matematisk statistik / 45
37 Likformig fördelning U(a, b) X U(a, b) { f X (x) = b a för a x b, annars. för x a, F X (x) = x a b a för a x b, för x b. Jan Grandell & Timo Koski () Matematisk statistik / 45
38 Exponentialfördelningen Exp(λ) X Exp(λ) { λ e λx för x, f X (x) = för x <. { e λx för x, F X (x) = för x <. Jan Grandell & Timo Koski () Matematisk statistik / 45
39 Exponentialfördelningen Exp(λ) Denna fördelning är viktig i väntetidsproblem. För att inse detta så tar vi ett enkelt exempel: Antag att n personer går förbi en affär per tidsenhet. Låt var och en av dessa gå in i affären oberoende av varandra och med sannolikheten p. Låt X vara tiden tills första kunden kommer. X > x betyder att ingen kund kommit efter x tidsenheter. P(X > x) = ( p) nx ty nx personer har gått förbi. Låt oss anta precis som då vi härledde Poissonfördelningen, att p = µ/n, där n är stor men µ är lagom. Då gäller P(X > x) = ( p) nx = ( µ n )nx e µx. Detta ger att F X (x) = P(X > x) e µx, dvs X är approximativt Exp(µ). Observera att väntevärdet (ännu ej definierat, men det kommer) är /µ! Jan Grandell & Timo Koski () Matematisk statistik / 45
40 Normalfördelningen N(µ, σ) X N(µ, σ) f X (x) = σ /2σ2 e (x µ)2 2π där µ godtycklig konstant och σ >. Denna fördelning är mycket viktig, och vi skall återkomma till den. Man kan inte analytiskt ge fördelningsfunktionen. Jan Grandell & Timo Koski () Matematisk statistik / 45
41 Täthetsfunktionerna för N(, ) och N(, ) Tätheten för N(, ) till vänster om tätheten för N(, ) Jan Grandell & Timo Koski () Matematisk statistik / 45
42 Beräkning av sannolikheter: allmänt A en delmängd av den reella axeln, P(X A) = sannolikheten för att X antar ett värde i A. Om X kontinuerlig: P(X A) = A f X (x)dx Jan Grandell & Timo Koski () Matematisk statistik / 45
43 Flerdimensionella stokastiska variabler Ofta mäter vi i samma slumpförsök flera storheter, och då beskrivs resultatet av en n-dimensionell stokastisk variabel (X, X 2,..., X n ). Exempel Slumpförsöket är att vi väljer en person slumpmässigt här i rummet, och sätter X = personens vikt; Y = personens längd. Vi nöjer oss med att ge detaljer i det två-dimensionella fallet. Låt (X,Y) vara en två-dimensionell s.v. F X,Y (x, y) = P(X x, Y y) kallas (den simultana) fördelningsfunktionen för (X, Y ). F X (x) = P(X x) = P(X x, Y ) = F X,Y (x, ) kallas den marginella fördelningsfunktionen för X. F Y (y) = F X,Y (, y) kallas den marginella fördelningsfunktionen för Y. Jan Grandell & Timo Koski () Matematisk statistik / 45
44 Flerdimensionella stokastiska variabler Definition X och Y är oberoende stokastiska variabler om F X,Y (x, y) = F X (x)f Y (y) obs! Detta bör gälla för ALLA (x, y). Jan Grandell & Timo Koski () Matematisk statistik / 45
45 Flerdimensionella stokastiska variabler Definition (X, X 2,..., X n ) är oberoende stokastiska variabler om F X,...,X n (x,..., x n ) = P(X x,..., X n x n ) = F X (x ) F Xn (x n ). Omvänt gäller att om X, X 2,..., X n är oberoende s.v. så fås den simultana fördelningen enl. definitionen ovan. Jan Grandell & Timo Koski () Matematisk statistik / 45
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Läs merSF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Läs merMatematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
Läs merFöreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Läs merSF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
Läs merSF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.
SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella
Läs merÖvning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Läs merExempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Läs merSF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Läs mer4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende
Läs merKap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Läs merMatematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Läs merJörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Läs merMatematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Läs merKap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
Läs merSF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
Läs merVåra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Flerdimensionella Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Flerdimensionella Ett slumpförsök kan ge upphov till flera (s.v.): kast med
Läs mer1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Läs merFöreläsning 4, Matematisk statistik för M
Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med
Läs merFöreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Läs merSF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Läs merExempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Läs merSF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig
Läs merTMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Läs merSF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk
Läs merResultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Läs merFinansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler
Läs merMatematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
Läs merKapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Läs merFöreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
Läs merFöreläsningsanteckningar i Matematisk Statistik. Jan Grandell
Föreläsningsanteckningar i Matematisk Statistik Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas som kursmaterial.
Läs merFöreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
Läs merF6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
Läs merTAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det
Läs merFöreläsning 8 för TNIU23 Integraler och statistik
Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Läs merStokastiska Processer F2 Föreläsning 1: Repetition från grundkursen
Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen Denna föreläsning kommer mest att vara en repetition av stoff från grundkursen. Längden på detta dokument kan tyckas vara oproportionerligt
Läs merResultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Läs merMatematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
Läs merFöreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Läs merFinansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Läs merFöreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Läs merFormel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Läs merTvå parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på
Läs mer4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable
Läs merhistogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Läs merMatematisk statistik 9 hp Föreläsning 3: Transformation och simulering
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk
Läs mer1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Läs merKapitel 5 Multivariata sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad
Läs mer4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Läs merMatematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
Läs merTAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
Läs merTentamen i matematisk statistik (92MA31, STN2) kl 08 12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs mer6. Flerdimensionella stokastiska variabler
6 Flerdimensionella stokastiska variabler 61 Simultana fördelningar Den simultana fördelningsfunktionen av X och Y, vilka som helst två stokastiska variabler, definieras F(a,b) = F X,Y (a,b) = P(X a,y
Läs merFöreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Läs mer4. Stokastiska variabler
4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan
Läs merProblemsamling i Sannolikhetsteori
Problemsamling i Sannolikhetsteori till An Intermediate Course in Probability av Allan Gut Sammanställd av Harald Lang 22/5-05 Kapitel 0 (Introduction) Man har ett seriesystem med två enheter som går sönder
Läs merSF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs mer17.1 Kontinuerliga fördelningar
7. Kontinuerliga fördelningar En SV X är kontinuerlig om F X (x) är kontinuerlig för alla x F X (x) är deriverbar med kontinuerlig derivata för alla x utom eventuellt för ändligt många värden Som vi tidigare
Läs merProblemdel 1: Uppgift 1
STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y
Läs merhistogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Läs merDetta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.
Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs merSF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
Läs merFACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator
Läs merVeckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2015 Jan Grandell & Timo Koski () Matematisk statistik 21.01.2015 1 / 1 Repetition:
Läs merF5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Läs mer1 Föreläsning V; Kontinuerlig förd.
Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall
Läs merFöreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
Läs merMatematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Läs merTAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge
Läs merKurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Läs merKapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi
Läs merFöresläsningsanteckningar Sanno II
Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här
Läs merSOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.
Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms
Läs merBIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
Läs mer