Problemdel 1: Uppgift 1

Storlek: px
Starta visningen från sidan:

Download "Problemdel 1: Uppgift 1"

Transkript

1 STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y är inte oberoende. b) Cov(X,Y) NegBin(,p) om p = p = p d) Om X Bin(00,0.005), så approximeras dess fördelning väl av en Poissonfördelning, men inte en normalfördelning. e) Y exp(λ +λ +...+λ n ) Problemdel : Uppgift a) För att vi ska uppfylla kraven för en täthetsfunktionfunktion så måste Detta ger f X (x)dx =. a [ x (x x )dx = a x ] = a 9 = = a = 9.

2 b) Väntevärdet för X får vi genom E[X] = x 9 (x x )dx = [ x 9 x5 ] 5 = Variansen ges av Var(X) = E[X ] E[X]. E[X ] = x 9 (x x )dx = [ x 9 x6 ] 6 = 9 5 =. Vi får alltså att Var(X) = ( 9 7 5) P(X >.5) = P(X <.5) = 9 (x x )dx = [ x 9 x ] Problemdel : Uppgift Låt S = 8 i= Y i, där Y i Re(9.5,0.5) och alla Y i är oberoende. Vidare får vi att E[S] = 8 E[Y ] = 80 samt Var(S) = {pga oberoendet} = 8 Var(Y ) =. Eftersom antalet variabler som summeras är ganska stort, nämligen 8, så gäller det baserat på Centrala gränsvärdessatsen att S är approximativt normalfördelat med väntevärde 80 och standardavvikelse. Således får vi P ( ) 75 < S < 85 ( Φ ) Φ ( ) = Φ(.5) Φ(.5) = Φ(.5) = =

3 Problemdel : Uppgift a) Definiera händelser: A = {ett slumpmässigt valt parti är av första klass} med A = {ett slumpmässigt valt parti är av andra klass} P(A ) =, P(A ) =. Vidare är det känt att P(en slumpmässigt vald grönsak är defekt A ) = 0.0 P(en slumpmässigt vald grönsak är defekt A ) = Låt en stokastisk variabel X ange antal defekta grönsaker bland tre uttagna från ett slummässigt valt parti. X kan anta värden 0,, och. Således anger X A antalet defekta grönsaker bland de tre uttagna grönsakerna för ett parti av andra klass. Varje dragning är oberoende och sannolikheten att få en defekt grönsak för parti av andra klassen är samma för varje dragning, vilket medför att X A Bin(,0.05). b) Med samma definitioner som i (a) blir sannolikheten att få precis en defekt grönsak av de tre uttagna från ett slumpmässigt valt parti lika med P(X = ) = {enligt LTS} = P(X = A ) P(A )+P(X = A ) P(A ) = ( ) + ( ) 0. P(A X = ) = {enligt Bayes sats} = P(X = A ) P(A ) P(X = ) Problemdel : Uppgift 5 = ( ) ( ) + ( ) a) Låt X = {antalet tryckfel per tenta} vara Poissonfördelad med intensiteten 0.5, dvs. X Po(0.5). Då P(X > ) = P(X ) = {ur Tabell} = = 0.008

4 b) Om Y är antalet tentor med fler än tre tryckfel bland 5 oberoende tentor, så är Y en binomialfördelad stokastisk variabel med parametrarna n = 5 och sannolikheten att tenta i, i =,,...,5, har fler än tre tryckfel 0.008, Y Bin(5, 0.008). Eftersom ( 0.008) < 5, men < 0., kan Y:s fördelning approximeras av en Poissonfördelning, men inte en normalfördelning. Vi får att Y approx Po( = 0.8). Detta ger att P(Y > 6) = P(Y 5) = {ur Tabell} = = Problemdel : Uppgift 6 a)viharalltsåtrepersonerdärallakommerfåvarsinhattpåsitthuvud.de tre personerna får inte kommunicera eller se varandras lappar. Hattarna kan baraantatvåolikafärger,blåellergrön.dåvihartrepersonermenbaratvå möjliga färger kommer alltid minst två av personerna ha samma färg på sin hatt. Det är detta faktum vi ska använda oss av för att hitta den optimala strategien.förattvinnakrävsdetattminstenavpersonernagissarrättoch ingen av de andra får gissa fel. Låt {BBG} beteckna händelsen att person har en blå hatt, person har en blå hatt och att person har en grön hatt. Vårt utfallsrum kommer då innehålla händelser Ω = {BBB,BBG,BGB,GBB,BGG,GBG,GGB,GGG} Strategien spelarna nu ska använda är att om någon av dem ser att de andra två har samma färg på sina hattar så ska man gissa på den motsatta färgen, om man ser att de andra två har olika färger ska man passa. Detta skulle ge P(vinna) = P(minst en gissar rätt och ingen gissar fel) = 0.75 Detta får vi fram genom att studera de olika möjligheterna när vi vinner och delar detta antal med 8, det totala antalet sätt. Om alla har samma färg på sin hatt så kommer alla tre gissa fel. Detta kan ske på två sätt. Om en person har en annan färg än de andra två (som då har samma färg) så kommer denna gissa rätt, de andra två kommer i sin tur att passa då de observerar olika färger. Detta kan ske på 6 sätt. Vi får alltså P(vinna) = 6 8 = 0.75 b) Låt oss, som uppgiften tipsar om, beteckna händelsen att den i-te mannen får tillbaka sin hatt med E i, i {,,,}. Vi söker sannolikheten att minst en av männen får tillbaka sin hatt. Det vill säga att antingen person får det ellerattpersonfårdetosv.utrycktivårahändelsere i sökervip(e E

5 E E ). Dessa händelser är varken disjunkta eller oberoende. Vi vet från räkneövningarna, eller så kan vi härleda med inklusion och exklusion, ett utryck för denna sannolikhet. Om vi har n stycken händelser A i, i =,...,n så ges sannolikheten av unionen av dem av n n P( A i ) = P(A i A j )+ P(A i A j A k )+...+( ) n+ P( i= i= P(A i ) i<j i<j<k För att kunna beräkna vår sannolikhet behöver vi alltså ta reda på sannolikheten för alla enskilda händelser och alla möjliga snitt av våra händelser E i. Sannolikheten att person i får sin egen hatt om person i går fram till högen och plockar med sig en hatt av de är ju /. P(E i ) =, i =,..., Sannolikheten för snittet mellan två av våra händelser blir P(E i E j ) = P(E i )P(E j E i ) = Där vi får fram P(E j E i ) genom att notera att om person i redan dragit sin egen hatt så har ju person j bara hattar att dra ifrån vilket ger att person j då drar sin hatt med en sannolikhet på /. De andra sannolikheterna får vi via liknande resonemang n A i ) P(E i E j E k ) = P(E i E j )P(E k E i E j ) = P(E k E i E j ) = P(E E E E ) = P(E E E )P(E E E E ) = i= Då varje snitt av k =,, händelser har samma sannolikhet så behöver vi bara ta reda på hur många olika snitt mellan två av våra händelser det finns, hur många olika snitt mellan tre av våra händelser det finns osv. för att kunna besvara huvudfrågan. T.ex kan vi ju bara skapa ett snitt mellan alla våra händelser. Totala antalet snitt vi kan skapa mellan k =,, av våra händelser är ( k). Detta ger oss att P( E i ) = i= P(E i ) i= ( ) P(E i E j )+ ( ) P(E i E j E k ) ( ) P(E E E E ) =! +!! e = = 0.6 Vi får alltså att sannolikheten att minst en av männen får sin hatt är 0.6 5

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

0 om x < 0, F X (x) = c x. 1 om x 2.

0 om x < 0, F X (x) = c x. 1 om x 2. Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

FÖRELÄSNING 7:

FÖRELÄSNING 7: FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 8 Johan Lindström 9 oktober 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F8 1/26 process Johan Lindström - johanl@maths.lth.se FMSF45/MASB3

Läs mer

Jörgen Säve-Söderbergh

Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:

Läs mer

Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess

Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp

Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp 15 januari, 2014 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Typgodkänd miniräknare

Läs mer

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2 Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}

Läs mer

Föreläsning 8, Matematisk statistik Π + E

Föreläsning 8, Matematisk statistik Π + E Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall

Läs mer

SF1901: Sannolikhetslära och statistik. Mer om Approximationer

SF1901: Sannolikhetslära och statistik. Mer om Approximationer SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

1.1 Diskret (Sannolikhets-)fördelning

1.1 Diskret (Sannolikhets-)fördelning Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas

Läs mer

1 Stokastiska processer. 2 Poissonprocessen

1 Stokastiska processer. 2 Poissonprocessen 1 Stokastiska processer En stokastisk process är en stokastisk variabel X(t), som beror på en parameter t, kallad tiden. Tiden kan vara kontinuerlig, eller diskret (i vilket fall man brukar beteckna processen

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Matematisk statistik TMS064/TMS063 Tentamen

Matematisk statistik TMS064/TMS063 Tentamen Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 Gripenberg I1. Vi antar att antalet telefonsamtal som kommer till ett servicenummer under en tidsperiod med längden

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

Föreläsning 12: Repetition

Föreläsning 12: Repetition Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Summor av slumpvariabler

Summor av slumpvariabler 1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler

Läs mer

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK

Läs mer

Föreläsning 3. Sannolikhetsfördelningar

Föreläsning 3. Sannolikhetsfördelningar Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess

Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Anna Lindgren 4+5 oktober 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F8: Binomial och Poisson 1/18 N(μ, σ)

Läs mer

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 1:A JUNI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel: miniräknare,

Läs mer

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat. Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p)

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK FREDAGEN DEN 8 MAJ 010 KL 14.00 19.00. Eaminator: Gunnar Englund, tel. 79074 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004, TEN 06-06-0 Hjälpmedel: Formler oh tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall vara

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

b) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p)

b) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p) Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 13:E AUGUSTI 2018 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlenko, 08-790 84 66 Examinator

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för

Läs mer

Lärmål Sannolikhet, statistik och risk 2015

Lärmål Sannolikhet, statistik och risk 2015 Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR00 6 juni, 200 kl. 9.00 1.00 Kursansvarig: Eric Järpe Maxpoäng: 0 Betygsgränser: 12p: G, 21p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer