Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
|
|
- Gunnel Ekström
- för 7 år sedan
- Visningar:
Transkript
1 Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1
2 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande en normalfördelning Allmänt gäller att en standardiserad s.v. är en s.v. med väntevärde 0 och sd 1 Om ξ är N(µ, σ) och η=(ξ -µ)/ σ, så gäller att η är N(0, 1) Ex. 6.1, sid
3 Sats 6 B och Sats 6 C Summor av oberoende Normal F är också Normal F Ex. 6.3, sid 159 Ex. 6.5, sid 161 3
4 Sats 6 D Om ξ 1, ξ 2,, ξ n är oberoende och alla ξ i är N(µ, σ) samt ξ = 1 n n i= 1 ξ i Så gäller ξ är N( μ, σ ) n 4
5 Samplingfördelningen Statistika varierar från urval till urval Detta betyder att statistika är en slumpvariabel En samplingfördelning är en sannolikhetsfördelning för en statistika Vid upprepade sampling, vet vi vilka värden som kan antas av stickprovsmedelvärdet och sannolikheten för dessa olika värden 5
6 Exempel Population: 3,5,2,1 (N = 4) Ta ett stickprov med n=3 (utan återläggning) Möjliga urval urval 3, 3, 5, 5, 2 3, 3, 5, 5, 1 3, 3, 2, 2, 1 5, 5, 2, 2, 1 x 10 / 3 = / 3 = 3 6 / 3 = 2 8/ 3 = /4 p( x) 2 3 x Varje x har samma sannolikhetsvärde = 1/4 6
7 Exempel Population: 1,2,3,4,5 (N = 5) Ta ett stickprov med n = 2 (med återläggning) x p(x) x E(ξ) = µ = 3 Varians = σ 2 = 2,5 Standardavvikelse = σ = 1,58 7
8 Exempel Urval x Urval 1, 1 1 3, 4 3,5 1, 2 1,5 3, 5 4 1, 3 2 4, 1 2,5 1, 4 2,5 4, 2 3 1, 5 3 4, 3 3,5 2, 1 1,5 4, 4 4 2, 2 2 4, 5 4,5 2, 3 2,5 5, 1 3 2, 4 3 5, 2 3,5 2, 5 3,5 5, 3 4 3, 1 2 5, 4 4,5 3, 2 2,5 5, 5 5 3, 3 3 E( X ) = μ = 3 Varians x = σ 2 X Standardavvikelse = σ frekvens p(x) 1 1 0,04 1,5 2 0, ,12 2,5 4 0, ,20 3,5 4 0, ,12 4,5 2 0, ,04 25 = 1,042 X = 1,0206 8
9 Exempel x x Originala fördelningen Samplingfördelningen n = 2 9
10 Exempel Samma medelvärde! x Originala fördelningen Samplingfördelningen n=2 x Mindre varians Mer klockformad x Samplingfördelningen n=3 Samplingfördelningen n=4 x 10
11 Centrala gränsvärdessatsen (CGS) Samma medelvärde! Population n = 2 n = 30 Mindre varians Mer klockformad μ x μ x μ x μ x 11
12 Centrala gränsvärdessatsen (CGS) Slutsatsen som kan dras från tidigare exempel: Oavsett formen på den populationsfördelning som ett slumpmässigt stickprov hämtas från, så går fördelningen för stickprovsmedelvärdet mot normalfördelningen då stickprovsstorleken (n) ökar Hur stort stickprov som behövs för att normalfördelningen skall kunna användas som en approximativ modell? Tumregel: I de flesta fall är normalfördelningen en tillräckligt god approximation vid n 30 Sats 6 E 12
13 Centrala gränsvärdessatsen (CGS) Centrala gränsvärdessatsen är även tillämpbar på summor av oberoende slumpvariabler vid stora stickprov oavsett hur populationens fördelning ser ut Som konsekvens av CGS så har vi följande ξ är approx N(nµ, nσ 2 ) Ex. 6.9, sid
14 Fördelningen för stickprovsmedelvärdet Om vi samplar från en normalfördelning är stickprovsmedelvärdet alltid normalfördelat oavsett stickprovsstorlek Om vi samplar från någon annan fördelning är stickprovsmedelvärdet approximativt normalfördelat om n är tillräckligt stort (n 30) 14
15 Stickprovsmedelvärdets väntevärde och varians Låt n vara stickprovsstorleken och låt µ och σ 2 vara medelvärdet och variansen i den population vi samplar ur ( ) Väntevärde (medelvärde): E ξ = μ Varianse: Standardavvikelse: V ( ) 2 2 σ ξ = σ = ξ n Medelfelet = σ ξ = σ n 15
16 Beräkningar av sannolikheter med hjälp av CGS Vi Vi utgick utgick ifrån ifrån den den normalfördelning som som då dåξ följde följde och och transformerade oss oss till till standardnormalfördelningen, vi vi kan kan utifrån utifrån detta detta bilda bilda vårt vårt η-värde för för ξ enligt enligt denna denna formel formel η Beräkna sannolikheterna med med hjälp hjälpav avtabellen = ξ σ / μ Ex: Ett slumpmässigt urval, n = 16 från en normalfördelningen med μ = 10 och σ = 8. n ξ μ P( ξ < 12) = P( < σ / n = P( η < 1) = 0, ) 8 / 16 16
17 Normalfördelningen som approximation till Binomial Vi ska titta på normalfördelningen som en approximation av binomialfördelningen Då n är stort kan normalfördelningen användas som approximation till binomial Ju mer p avviker från 0.50 desto större n krävs för god approximation. Tumregel: np( 1 p) > 10 17
18 Exempel n=3 n=20 p(x) 0,4 0,3 0,2 0,1 p(x) 0,2 0,15 0,1 0, Antal lyckade utfall Antal lyckade utfall 18
19 Normalfördelningen som approximation till Binomial Om ξ är Bin (n, p) och tumregeln är uppfylld, så kan vi som approximativ modell använda normalfördelningen med µ= npoch σ 2 =np(1-p) Anledningen till att man vill approximera fördelningar med en normalfördelningen är att man vill förenkla räknearbetet P( a ξ b) P a np np(1 p) η b np np(1 p) 19
20 Kontinuitetskorrektion En detalj som komplicerar approximationen är att binomialfördelningen är diskret medan normalfördelningen är kontinuerlig Om en variabel är normalfördelad är sannolikheten att variabeln antar ett visst värde alltid lika med noll, vilket ju inte gäller för en binomialfördelad variabel 20
21 Kontinuitetskorrektion (med halvkorrektion) Lösning: att använda halvkorrektionen P(ξ=a) approximeras med ytan under normalfördelningens kurva i intervallet (a-0,5, a+0,5) P( a ξ b) P a 0,5 np np(1 p) η b + 0,5 np np(1 p) 21
22 Exempel Antar att ξ är binomialfördelad med n = 50 och p = 0,40. Med hjälp av normal approximation Beräkna P(ξ 10) n = 50 p =.4 (1-p) =.6 np(1-p) = 12>10 Beräkna μ = np = 50(0,4) = 20 normal approximationen är ok! σ = np(1 p) = 50(0,4)(0,6) = 3,46 22
23 Exempel P( ξ 10) P( η 10,5 20 ) 3,46 = P( η 2.74) = 0,
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs merSamplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Läs merF9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Läs merKap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
Läs merJörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Läs merFöreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Läs merSF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
Läs merFöreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Läs merFÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
Läs merResultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Läs merTMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Läs merFöreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Läs merKapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Läs merTMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Läs merFöreläsning 4. Kapitel 5, sid Stickprovsteori
Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:
Läs merFöreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
Läs merResultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Läs merF10 Problemlösning och mer om konfidensintervall
1/13 F10 Problemlösning och mer om konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 22/2 2013 2/13 Dagens föreläsning Problemlösning Skattningar Konfidensintervall
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Läs merFormel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Läs merF9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs merVi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Läs merCentrala gränsvärdessatsen (CGS). Approximationer
TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination
Läs mer4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Läs merFöreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs merKap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Läs merKapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen
Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen
Läs merTentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Läs merFöreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
Läs mer1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter
Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden
Läs merTvå parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
Läs merFöreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
Läs mer1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Läs merMatematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Anna Lindgren 4+5 oktober 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F8: Binomial och Poisson 1/18 N(μ, σ)
Läs merFöreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Läs merTabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer
Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Observera att inga anteckningar får finnas i formelsamlingen vid tentamenstillfället Thommy Perlinger 17 september 2015 Innehåll
Läs merFöreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
Läs mer8. NÅGRA SPECIELLA KONTINUERLIGA SANNOLIKHETSFÖRDELNINGAR
8. NÅGRA SPECIELLA KONTINUERLIGA SANNOLIKHETSFÖRDELNINGAR 8.1 Normalfördelningen Den kanske viktigaste och mest kända sannolikhetsfördelning är den s k normalfördelningen. Den har en mycket stor betydelse
Läs merMatematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Läs merIntroduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Läs merTAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
Läs merSF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Läs merFORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Läs merFöreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
Läs mer4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Läs merFORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Läs merFöreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Läs merTryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.
Läs merTentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2
Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00
Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt
Läs merMatematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Läs merExempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merSummor av slumpvariabler
1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler
Läs merDatorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
Läs merRepetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Läs merFinansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merTentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:
Läs merIntroduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
Läs merUrvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap )
F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Urval Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta inte möjlig För dyrt Tar
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
Läs merFinansiell statistik, vt-05. Kontinuerliga s.v. variabler. Kontinuerliga s.v. F7 Kontinuerliga variabler
5 45 4 5 5 5 5 Öppningskurs 5 9 7 5 9 7 4 45 49 5 57 6 65 abb Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 Kontinuerliga variabler Kontinuerliga s.v.
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Läs merFöreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Läs mer2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Läs merTMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Läs merFöreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Läs mer1 Föreläsning IV; Stokastisk variabel
1 FÖRELÄSNING IV; STOKASTISK VARIABEL 1 Föreläsning IV; Stoastis variabel Vi har tidigare srivit P (1, 2, 3, 4, 5) = P (C) för sannoliheten för att få 1, 2, 3, 4 eller 5 vid ett tärningsast. Vi sall använda
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
Läs merbli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merMatematisk statistik, LMA 200, för DAI och EI den 25 aug 2011
Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Läs merVeckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
Läs merF6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
Läs merSannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i
Läs merUrval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval
Urval F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Ursprung: Linda Wänström Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta
Läs mer0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merDATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Läs merFöreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Läs merMatematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Läs merMatematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
Läs mer(x) = F X. och kvantiler
Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i
Läs merSF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
Läs merTAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 I Punktskattningar I Egenskaper I Väntevärdesriktig I E ektiv I Konsistent
Läs merMer om konfidensintervall + repetition
1/14 Mer om konfidensintervall + repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/2 2011 2/14 Dagens föreläsning Skattningar som slumpvariabler Väntevärde Varians
Läs mer, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Läs mer