SF1901: Sannolikhetslära och statistik
|
|
- Emma Bergman
- för 7 år sedan
- Visningar:
Transkript
1 SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski Jan Grandell & Timo Koski Matematisk statistik / 40
2 Centrala gränsvärdessatsen Vi har sett några exempel på att normalfördelningen har trevliga statistiska egenskaper. Detta skulle vi inte ha så stor glädje av, om normalfördelningen inte dessutom var vanligt förekommande. Centrala gränsvärdessatsen CGS, som är den huvudsakliga motiveringen för normalfördelningen, kan utan vidare sägas vara ett av sannolikhetsteorins och statistikens allra viktigaste resultat. Sats (CGS) Låt X 1,X 2,... vara oberoende och lika fördelade s.v. med väntevärde µ och standardavvikelse σ. Då gäller att ( n ) P i=1 X i nµ σ x Φ(x) då n. n Jan Grandell & Timo Koski Matematisk statistik / 40
3 CGS Ofta uttrycker man slutsatsen i CGS som att n i=1x i nµ σ n är approximativt N(0, 1)-fördelad eller att n X i är approximativt N ( nµ, σ n ) -fördelad. i=1 Jan Grandell & Timo Koski Matematisk statistik / 40
4 Diskreta st. v:er: Binomialfördelningen Definition En diskret s.v. X säges vara binomialfördelad med parametrarna n och p, Bin(n, p)-fördelad, om ( ) n p X (k) = p k (1 p) n k, för k = 0,1,...,n. k Vi skriver detta med X Bin(n,p). Jan Grandell & Timo Koski Matematisk statistik / 40
5 Diskreta st. v:er: Binomialfördelningen De generella villkoren för detta: n oberoende upprepningar av ett försök. varje försök har två utfall, 0 och 1. sannolikheten för lyckat försök (=1) är densamma = p vid varje försök. X = antalet lyckade försök. ( ) n p X (k) = p k (1 p) n k, för k = 0,1,...,n. k Vi skriver detta med X Bin(n,p). Jan Grandell & Timo Koski Matematisk statistik / 40
6 Binomialfördelningen Antag att vi gör ett försök där en händelse A, med sannolikheten p = P(A), kan inträffa. Vi upprepar försöken n gånger, där försöken är oberoende. Sätt X = antalet gånger som A inträffar i de n försöken. Vi säger då att X är binomialfördelad med parametrarna n och p, eller kortare att X är Bin(n, p)-fördelad. Vi har ( ) n p X (k) = p k q n k, för k = 0,...,n, k där q = 1 p. Jan Grandell & Timo Koski Matematisk statistik / 40
7 X Bin(n,p), X = U U n Låt U 1,...,U n vara s.v. definierade av { 0 om A inträffar i försök nummer i, U i = 1 om A inträffar i försök nummer i. Lite eftertanke ger att U 1,...,U n är oberoende och att X = U U n. Jan Grandell & Timo Koski Matematisk statistik / 40
8 X Bin(n,p), X = U U n Då och E(U i ) = 0 (1 p)+1 p = p V(U 1 ) = E(U 2 i ) E(U i ) 2 = E(U i ) E(U i ) 2 = p p 2 = p(1 p) så följer E(X) = ne(u i ) = np och V(X) = nv(u i ) = npq. Jan Grandell & Timo Koski Matematisk statistik / 40
9 Bin(n,p) approximativt N(np, npq)-fördelad Av Xs representation som en summa följer att CGS kan tillämpas. Sats Om X är Bin(n,p)-fördelad med npq 10 så är X approximativt N(np, npq)-fördelad. Detta innebär att } P(X k) P(X < k) ( ) k np Φ. npq Med halvkorrektion menas att vi använder följande approximation: ( k P(X k) Φ np ), npq ( k 1 2 P(X < k) Φ np ). npq Jan Grandell & Timo Koski Matematisk statistik / 40
10 Binomial distribution: approximation For p = 0.5 and n = 15 the Binomial distribution with mean = 7.5, and variance = The curve in the right hand figure µ = 7.5 and σ 2 = σ 2π e (x µ)2 /2σ Jan Grandell & Timo Koski Matematisk statistik / 40
11 The Galton Board Jan Grandell & Timo Koski Matematisk statistik / 40
12 The Galton Board Experiment The Galton board experiment consists of performing n trials with probability of success p. The trial outcome are represented graphically as a path in the Galton board: success corresponds to a bounce to the right and failure to a bounce to the left. Jan Grandell & Timo Koski Matematisk statistik / 40
13 The Galton Board Experiment: Bell Shape Jan Grandell & Timo Koski Matematisk statistik / 40
14 The Galton Board Experiment An applet for the Galton board experiment Jan Grandell & Timo Koski Matematisk statistik / 40
15 Galtons Quincunx Jan Grandell & Timo Koski Matematisk statistik / 40
16 CGS: en tillämpning på multiplikativa processer Sats Låt X 1,X 2,...,X n vara oberoende och likafördelade s.v. och positiva dvs. för all i har vi P (X i > 0) = 1. Om n är tillräckligt stort, så har Y = X 1 X 2 X n approximativt en lognormalfördelning. Bevis. lny = lnx 1 +lnx lnx n Således är lny en summa av oberoende likafördelade s.v. er (dvs. lnx i na) och därmed enligt CGS approximativt normalfördelad om n är tillräckligt stort, och därför är Y approximativt lognormalfördelad, om n är tillräckligt stort. Jan Grandell & Timo Koski Matematisk statistik / 40
17 Extra: Lognormalfördelning Antag att Z är en positiv stokastisk variabel, dvs. P (Z > 0) = 1. Vi sätter Y = lnz och ANTAR att Y N(µ, σ). Vad är fördelningen för Z? Tag z > 0. Derivering ger F Z (z) = P (Z z) = P(lnZ lnz) ( Y µ = P (Y lnz) = P lnz µ ) σ σ ( ) lnz µ = Φ σ f Z (z) = d ( lnz µ dz F Z(z) = ϕ σ ) 1 σz = = 1 σz 2π e (lnz µ)2 /2σ2 Jan Grandell & Timo Koski Matematisk statistik / 40
18 Nytt: Lognormalfördelning Z är en positiv stokastisk variabel, d.v.s. P (Z > 0) = 1 och Y = lnz N(µ, σ) f Z (z) = { 1 σz 2π e (lnz µ)2 /2σ 2 för z 0, 0 för z < 0. Vi säger att Z är lognormalfördelad, Z LN(µ, σ). Jan Grandell & Timo Koski Matematisk statistik / 40
19 Lognormalfördelning Z LN(µ, σ). Observera att µ och σ INTE är väntevärde och standardavvikelse för Z. Man kan i själva verket härleda att ( ) E (Z) = e µ+σ2 /2,V (Z) = e 2µ+σ2 e σ2 1 Jan Grandell & Timo Koski Matematisk statistik / 40
20 Lognormalfördelning Z LN(1,1) E (Z) = 4.48, V (Z) = 34.5 Z LN(2,1) E (Z) = 12.18, V (Z) = Jan Grandell & Timo Koski Matematisk statistik / 40
21 Poissonfördelningen Definition En diskret s.v. X säges vara Poissonfördelad med parameter µ, Po(µ)-fördelad, om p X (k) = µk k! e µ, för k = 0,1.... Vi påminner om att om X är Po(µ)-fördelad, så gäller E(X) = µ och V(X) = µ. Jan Grandell & Timo Koski Matematisk statistik / 40
22 Summan av två oberoende diskreta: faltningsformeln Ett hjälpresultat: X och Y vara oberoende diskreta variabler. k är ett icke-negativt heltal, ( ) P(X +Y = k) = P k i=0{x = i Y = k i} = k P ({X = i Y = k i}), i=0 ty händelserna i unionen är diskjunkta. Oberoendet ger = och vi har den s.k. faltningsformeln P(X +Y = k) = k P ({X = i})p ({Y = k i}), i=0 k k p X (i)p Y (k i) = p X (k i)p Y (i). i=0 i=0 Jan Grandell & Timo Koski Matematisk statistik / 40
23 Summan av två oberoende Poissonfördelade Poissonfördelningen är den viktigaste diskreta fördelningen, och har t.ex. följande trevliga egenskap. Sats Om X och Y vara oberoende Po(µ X )- resp. Po(µ Y )-fördelade s.v. Då gäller att X +Y är Po(µ X + µ Y )-fördelad. Bevis. Hjälpresultatet (faltningsformeln) ovan ger P(X +Y = k) = k k µ P(X = i)p(y = k i) = i X i=0 i=0 i! k i=0 µ i X µ(k i) Y e µ µ(k i) X Y (k i)! e µ Y = e (µ X+µ Y ) i!(k i)! = e (µ X+µ Y ) (µ X + µ Y ) k k ( )( ) k i ( ) (k i) µx µy k!. i=0 i µ X + µ Y µ X + µ Y }{{} = 1, enl. Binomialsatsen. Jan Grandell & Timo Koski Matematisk statistik / 40
24 Approximation av Po(µ) Om bägge villkoren p 0.1 och npq 10 är uppfyllda kan vi välja om vi vill Poissonapproximera eller normalapproximera. Detta är ingen motsägelse, som följande sats visar. Sats Om X är Po(µ)-fördelad med µ 15 så är X approximativt N(µ, µ)-fördelad. Jan Grandell & Timo Koski Matematisk statistik / 40
25 Diskreta st. v:er: Poissonfördelningen Ofta när det är rimligt att anta att en s.v. X är Bin(n,p)-fördelad, så är det även rimligt att anta att p är liten och att n är stor. Låt oss anta att p = µ/n, där n är stor men µ är lagom. Då gäller ( ) n p X (k) = p k (1 p) n k n(n 1)...(n k +1) ( µ k ( = 1 k k! n) µ ) n k n = µk ( 1 µ k! n ) n n(n 1)...(n k +1) }{{} n k 1 µ }{{}}{{ n } e µ 1 1 ( ) k µk k! e µ. Jan Grandell & Timo Koski Matematisk statistik / 40
26 Approximation med Po(np) Vi kan alltså införa Poissonfördelningen som en approximation av binomialfördelningen. Detta kan vi formalisera till följande sats. Sats Om X är Bin(n,p)-fördelad med p 0.1 så är X approximativt Po(np)-fördelad. I vår approximation antog vi även att n var stor. Detta är inte nödvändigt, men vårt enkla resonemang fungerar inte utan denna extra förutsättning. Man kan visa att om X är Bin(n,p) och Y är Po(np) så gäller att P(X = k) P(Y = k) np 2. Jan Grandell & Timo Koski Matematisk statistik / 40
27 Ett exempel : approximation med Po(np), I en datalänk växlar de binära siffrorna eller bitarna (0 och 1) polaritet dvs. 0 övergår i 1 eller omvänt med sannolikheten En viss bit i en bitgrupp växlar polaritet oberoende av alla de andra bitarna. Protokollet i datalänken kontrollerar en bitgrupp som omfattar ( 1 Mbyte ) bitar. Felkontrollen upptäcker om fem eller flera bitar fått sina polariteter omkastade i bitgruppen. Om fem eller flera polaritetsväxlingar har upptäckts, begärs av protokollet en upprepad överföring av denna bitgrupp. Vi säger att en överföring lyckas om en upprepad överföring av bitgruppen inte kommer att begäras. De olika överföringarna av en och samma bitgrupp antas vara oberoende av varandra. Jan Grandell & Timo Koski Matematisk statistik / 40
28 Approximation med Po(np), ett exempel: forts. Betrakta den stokastiska variabeln X = antalet överföringar av en bitgrupp om bitar som behövs för att överföringen skall lyckas för första gången, den lyckade överföringen medräknad. Sökt: väntevärdet för X. Jan Grandell & Timo Koski Matematisk statistik / 40
29 Exempel: forts. Låt p s beteckna sannolikheten för att en ny överföring av en bitgrupp om bitar lyckas dvs. p s = sannolikheten för högst fyra växlingar av polaritet. Den stokastiska variabeln X har ffg (p s ) - fördelningen eller För-första-gången -fördelningen p.g.a. att de olika överföringarna är oberoende och p.g.a. att den lyckade överföringen medräknas. Dvs. P(X = k) = (1 p s ) k 1 p s, k = 1,2,3,..., En enkel kalkyl ger väntevärdet E (X) = 1 p s (se kursens formelsamling). Därmed behöver vi p s. Jan Grandell & Timo Koski Matematisk statistik / 40
30 Exempel: forts. Låt Z vara antalet bitar som får sin polaritet omkastad, när en bitgrupp om bitar överförs. Då fås p s = P (Z 4). P.g.a. att bitarna i en bitgrupp växlar polaritet oberoende av varandra är vi ledda till den statiska modellen Z Bin( ,10 7 ), dvs. att Z är binomialfördelad med parametrarna n = och p = Jan Grandell & Timo Koski Matematisk statistik / 40
31 Exempel: forts. Vi beräknar p s med en approximation av binomialfördelningen Bin( ,10 7 ) med Poissonfördelningen med parametern n p = 0.8. Denna approximation är rimlig, ty p = Vi har alltså att Z är approximativt Po(0.8)- fördelad. Tabellsamlingen ger med Poissonfördelningen Po(0.8) approximationen p s = P (Z 4) SVAR: E (X) Jan Grandell & Timo Koski Matematisk statistik / 40
32 Exempel: uppskattningen ovan X Bin( ,10 7 ) och Y är Po(0.8) så gäller att P(X = k) P(Y = k) np 2. P(X = k) P(Y = k) = e 08 Jan Grandell & Timo Koski Matematisk statistik / 40
33 Exempel: check mot MATLAB Statistics Toolbox >> help binocdf BINOCDF Binomial cumulative distribution function. Y=BINOCDF(X,N,P) returns the binomial cumulative distribution function with parameters N and P at the values in X. The size of Y is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs. The algorithm uses the cumulative sums of the binomial masses. See also binofit, binoinv, binopdf, binornd, binostat, cdf. >> binocdf(4, ,10 ( 7)) ans = Jan Grandell & Timo Koski Matematisk statistik / 40
34 Urnor igen Vi påminner om urnmodellerna. Vi hade en urna med kulor av två slag: v vita och s svarta. Vi drog n kulor ur urnan slumpmässigt. Sätt A = Man får k vita kulor i urvalet. Dragning utan återläggning: Dragning med återläggning: P(A) = P(A) = (v k )( s n k ) ( v+s n ). ( )( ) n v k ( ) s n k. k v +s v +s Jan Grandell & Timo Koski Matematisk statistik / 40
35 Hypergeometrisk fördelning Antag att vi har N enheter, där proportionen p, dvs Np stycken, har egenskapen A. Drag ett slumpmässigt urval om n stycken enheter. Sätt X = antalet enheter i urvalet med egenskapen A. I termer av urnmodellen för dragning utan återläggning gäller Np = v och N(1 p) = s om A = vit kula. Således fås p X (k) = P(X = k) = (Np k )(N(1 p) n k ) ( N n ), för 0 k Np och 0 n k N(1 p). Man säger att X är Hyp(N,n,p)-fördelad. Jan Grandell & Timo Koski Matematisk statistik / 40
36 Hypergeometrisk fördelning X är Hyp(N,n,p)-fördelad, man kan visa att E(X) = np och V(X) = N n N 1 np(1 p). Jan Grandell & Timo Koski Matematisk statistik / 40
37 Approximationer, Hyp(N, n, p) Om n/n är någolunda liten, så verkar det troligt att det inte spelar så stor roll om vi drar med återläggning eller ej. Vi har ( Np k )(N(1 p) n k ) ( N n ) = = Np! k!(np k)! n! k!(n k)! N(1 p)! n!(n n)! (n k)![n(1 p) (n k)]! N! Np!(N(1 p)!(n n)! (Np k)![n(1 p) (n k)]!n! ( ) n p k q n k. k n! (Np) k (N(1 p)) n k k!(n k)! N n = Jan Grandell & Timo Koski Matematisk statistik / 40
38 Approximationer, Hyp(N, n, p) Sats Om X är Hyp(N,n,p)-fördelad med n/n 0.1 så är X approximativt Bin(n, p)-fördelad. Sats Om X är Bin(n,p)-fördelad med npq 10 så är X approximativt N(np, npq)-fördelad. Detta innebär att } P(X k) P(X < k) ( ) k np Φ. npq Jan Grandell & Timo Koski Matematisk statistik / 40
39 Approximation av Hyp(N, n, p) Av detta följer att Hyp(N,n,p) N(np, npq) om n/n 0.1 och npq 10. Det räcker dock att kräva N n N 1np(1 p) 10. Jan Grandell & Timo Koski Matematisk statistik / 40
40 Sammanfattning n/n 0.1 {}}{ Hyp(N,n,p) Bin(n, p) N n N 1 np(1 p) 10 {}}{ N(np, npq) npq 10 {}}{ N(np, npq) µ 15 p 0.1 {}}{{}}{ Po( np ) N(µ, µ) }{{} =µ Jan Grandell & Timo Koski Matematisk statistik / 40
SF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Anna Lindgren 4+5 oktober 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F8: Binomial och Poisson 1/18 N(μ, σ)
Föreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Föreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Centrala gränsvärdessatsen (CGS). Approximationer
TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 8 Johan Lindström 9 oktober 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F8 1/26 process Johan Lindström - johanl@maths.lth.se FMSF45/MASB3
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
Problemdel 1: Uppgift 1
STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Grundläggande matematisk statistik
Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Föreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.
SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
Betingning och LOTS/LOTV
Betingning och LOTS/LOTV Johan Thim (johan.thim@liu.se 4 december 018 Det uppstod lite problem kring ett par uppgifter som hanterade betingning. Jag tror problemen är av lite olika karaktär, men det jag
Föreläsningsanteckningar i Matematisk Statistik. Jan Grandell
Föreläsningsanteckningar i Matematisk Statistik Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas som kursmaterial.
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
4. Stokastiska variabler
4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790
modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet
a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp
Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp 15 januari, 2014 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Typgodkänd miniräknare
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA Matematisk statistik, Tentamen består av åtta uppgifter motsvarande totalt poäng. Det krävs minst poäng för betyg, minst poäng för 4 och minst 4 poäng för. Examinator: Ulla Blomqvist, ankn
Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011
Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:
Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:
Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.
Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR
7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR Några sannolikhetsfördelningar förekommer ofta i tillämpade problem. Eftersomdeförekommeroftahardefåttspeciellanamn. Idettakapitelskallvi studera två
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)
Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) Formellsamling och teori Nästa varje ekva.on som vi använder under kursen finns I samlingen. Tricket i examen är hica räc metod/fördelning.ll
Tentamen i matematisk statistik (92MA31, STN2) kl 08 12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.