Matematisk statistik KTH. Formelsamling i matematisk statistik
|
|
- Ann Henriksson
- för 6 år sedan
- Visningar:
Transkript
1 Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017
2 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska variabler V X) = E X 2) E X)) 2 C X, Y ) = E X E X)) Y E Y ))) = E XY ) E X) E Y ) ρ X, Y ) = C X, Y ) D X) D Y ) 3 Diskreta fördelningar Binomialfördelningen ) n X är Binn, p) om p X k) = p k 1 p) n k, k = 0, 1,..., n, där 0 < p < 1. k E X) = np, V X) = np 1 p) För-första-gången -fördelningen X är ffgp) om p X k) = p 1 p) k 1, k = 1, 2, 3,..., där 0 < p < 1. E X) = 1 p, V X) = 1 p p 2 Hypergeometriska fördelningen ) ) Np N 1 p) X är HypN, n, p) om p X k) = k n k ), 0 k Np, N n 0 n k N 1 p), där N, Np och n är positiva heltal samt N 2, n < N, 0 < p < 1. E X) = np, V X) = N n np 1 p) N 1 Poissonfördelningen X är Poµ), där µ > 0, om p X k) = µk k! e µ, k = 0, 1, 2,... E X) = µ, V X) = µ 4 Kontinuerliga fördelningar Likformig fördelning X är U a, b), där a < b, om f X k) = E X) = a + b b a)2, V X) = för a < x < b b a 0 annars 2
3 Exponentialfördelningen X är Expλ), där λ > 0, om f X x) = E X) = 1 λ, V X) = 1 λ 2 { λe λx för x > 0 0 annars Normalfördelningen X är N µ, σ) om f X k) = E X) = µ, V X) = σ 2 1 x µ)2 e 2σ 2, < x <, σ > 0 2πσ 2 X är N µ, σ) om och endast om X µ är N 0, 1) σ Om Z är N 0, 1) så har Z fördelningsfunktionen Φ x) enligt Tabell 1 och täthetsfunktionen ϕ x) = 1 e x2 /2, < x <. 2π En linjärkombination i a i X i + b av oberoende, normalfördelade stokastiska variabler är normalfördelad. 5 Centrala gränsvärdessatsen Om X 1, X 2,..., X n är oberoende, likafördelade stokastiska variabler med väntevärde µ och standardavvikelse σ > 0, så är Y n = X X n approximativt N µn, σ n) om n är stort. 6 Approximation HypN, n, p) Binn, p) om n N 0.1 Binn, p) Ponp) om p 0.1 Binn, p) N np, ) np 1 p) om np 1 p) 10 Poµ) N µ, µ ) om µ 15 7 Tjebysjovs olikhet Om E X) = µ och D X) = σ > 0 så gäller för varje k > 0 att P X µ < kσ) 1 k 2 8 Statistiskt material x = 1 n s 2 = 1 n 1 x j x j x) 2 = 1 x 2 j 1 n 1 n x j 2 3
4 9 Punktskattningar 9.1 Maximum-likelihoodmetoden Låt x i vara en observation av X i, i = 1, 2,..., n, där fördelningen för X i beror på en okänd parameter θ. Det värde θobs som maximerar likelihoodfunktionen L θ) = p X 1,...,X n x 1,..., x n ; θ) =om oberoende)= p X1 x 1 ; θ) p Xn x n ; θ) f X1,...,X n x 1,..., x n ; θ) =om oberoende)= f X1 x 1 ; θ) f Xn x n ; θ) kallas maximum-likelihoodskattningen ML-skattningen) av θ. 9.2 Minsta-kvadratmetoden Låt x i vara en observation av X i, i = 1, 2,..., n, och antag att E X i ) = µ i θ 1, θ 2,..., θ k ) och V X i ) = σ 2, där θ 1, θ 2,..., θ k är okända parametrar och X 1, X 2,..., X k är oberoende. Minsta-kvadratskattningarna MK-skattningarna) av θ 1, θ 2,..., θ k är de värden θ 1 ) obs, θ 2) obs,..., θ k) obs som minimerar kvadratsumman Q = Q θ 1, θ 2,..., θ k ) = x i µ i θ 1, θ 2,..., θ k )) Medelfel En skattning av D θ ) kallas medelfelet för θ och betecknas d θ ). 9.4 Felfortplantning Med beteckningar och förutsättningar enligt läroboken gäller a) E g θ )) gθ obs ) D g θ )) g θ obs ) D θ ) b) E g θ 1,..., θ n)) gθ 1 ) obs,..., θ n) obs ) V g θ 1,..., θ n)) C θi, θj ) [ g x i ] g x j x k =θ k ) obs,k=1,...,n 10 Några vanliga fördelningar i statistiken χ 2 -fördelningen Om X 1, X 2,..., X f är oberoende N 0, 1), så gäller det att f Xk 2 är χ 2 f)-fördelad. k=1 4
5 t-fördelningen Om X är N 0, 1) och Y är χ 2 f) samt om X och Y är oberoende, så gäller det X att är t f)-fördelad. Y/f 11 Stickprovsvariablernas fördelningar vid normalfördelade stickprov 11.1 Ett normalfördelat stickprov Låt X 1,..., X n vara oberoende stokastiska variabler som alla är N µ, σ). Då gäller: ) σ a) X är N µ, n b) Xi X ) 2 σ 2 = c) X och S 2 är oberoende d) X µ S/ n är t n 1) n 1) S2 σ 2 är χ 2 n 1) 11.2 Två normalfördelade stickprov med samma varians Låt X 1,..., X n1 vara N µ 1, σ) och Y 1,..., Y n2 vara N µ 2, σ) och samtliga dessa stokastiska variabler antas vara oberoende. Då gäller: 1 a) X Y är N µ 1 µ 2, σ + 1 ) n 1 n 2 b) n 1 + n 2 2) S 2 σ 2 är χ 2 n 1 + n 2 2) där S 2 = n 1 1) S1 2 + n 2 1) S2 2, n 1 + n 2 2 S1 2 = 1 n 1 Xi X ) 2 och S 2 n = 1 n 2 Yi Y ) 2 n 2 1 c) X Y och S 2 är oberoende d) X Y µ 1 µ 2 ) 1 S + 1 n 1 n 2 är t n 1 + n 2 2) 11.3 Två normalfördelade stickprov med olika varians Låt X 1,..., X n1 vara N µ 1, σ 1 ) och Y 1,..., Y n2 vara N µ 2, σ 2 ) och samtliga dessa stokastiska variabler antas vara oberoende. ) Då gäller: σ1 2 X Y är N µ 1 µ 2, + σ2 2 n 1 n 2 5
6 12 Konfidensintervall 12.1 λ-metoden Låt θ vara N θ, D), där D är känd och θ okänd. Då är θ obs ± D λ α/2 ett konfidensintervall för θ med konfidensgraden 1 α t-metoden Låt θ vara N θ, D), där D och θ är okända och D inte beror på θ. Låt Dobs vara en punktskattning av D sådan att θ θ är t f). Då är D θ obs ± D obs t α/2 f) ett konfidensintervall för θ med konfidensgraden 1 α Approximativa metoden Låt θ vara approximativt N θ, D). Antag att Dobs är en lämplig punktskattning av D. Då är θ obs ± D obs λ α/2 ett konfidensintervall för θ med den approximativa konfidensgraden 1 α Metod baserad på χ 2 -fördelning Låt θobs vara en punktskattning av en parameter θ sådan att ) θ 2 f är χ 2 f). Då är θ ) f θ f obs χ 2 α/2 f), θ obs χ 2 1 α/2 f) ett konfidensintervall för θ med konfidensgraden 1 α. 13 Linjär regression 13.1 Fördelningar Låt Y i vara N α + βx i, σ), i = 1, 2,..., n, och oberoende. Då gäller: a) β = x i x) Y i Y ) är N β, x i x) 2 σ n x i x) 2 ) b) α = Y β 1 x är N α, σ n + x) 2 n x i x) 2 ) c) α + β 1 x 0 är N α + βx 0, σ n + x 0 x) 2 n x i x) 2 6
7 d) n 2) S2 σ 2 är χ 2 n 2) där S 2 = 1 n 2 e) S 2 är oberoende av α och β Y i α β x i ) Konfidensintervall I α : αobs ± t 1 p/2 n 2) s n + x) 2 n x i x) 2 I β : βobs ± t s p/2 n 2) n x i x) 2 I α+βx0 : αobs + β obs x 1 0 ± t p/2 n 2) s n + x 0 x) 2 n x i x) Beräkningsaspekter S xy = x i x) y i y) = x i x) y i = S xx = S yy = x i x) 2 = y i y) 2 x 2 i n x) 2 x i y i y) = n 2) s 2 = S yy β obs )2 S xx = S yy β obs S xy = min α,β 14 Hypotesprövning 14.1 Definitioner x i y i nx y y i α βx i ) 2 Signifikansnivån felrisken) α är det maximala värdet av) P förkasta H 0 ) då hypotesen H 0 är sann. Styrkefunktionen h θ) = P förkasta H 0 ) då θ är rätt parametervärde Konfidensmetoden Förkasta H 0 : θ = θ 0 på nivån α om θ 0 ej faller inom ett lämpligt valt konfidensintervall med konfidensgraden 1 α χ 2 -test Antag att n oberoende upprepningar av ett försök med de möjliga utfallen A 1, A 2,..., A r med respektive sannolikheter P A 1 ), P A 2 ),..., P A r ). Låt, för j = 1, 2,..., r, den stokastiska variableln X j beteckna antalet försök som ger resultatet A j. 7
8 Test av given fördelning Vi vill testa H 0 : P A 1 ) = p 1, P A 2 ) = p 2,..., P A r ) = p r för givna sannolikheter p 1, p 2,..., p r. Då blir r x j np j ) 2 Q = ett utfall av en approximativt χ 2 r 1)-fördelad stokastisk np j variabel om H 0 är sann och np j 5, j = 1, 2,..., r. Om vi skattar k parametrar ur data, θ = θ 1,..., θ k ) för att skatta p 1, p 2,..., p r med p 1 θobs ), p 2θobs ),..., p rθobs ), så är r Q x j np j θobs = ))2 np j θobs ) ett utfall av en approximativt χ 2 r k 1)-fördelad stokastisk variabel. Homogenitetstest Vi vill testa om sannolikheterna för utfallen A 1, A 2,..., A r försöksserier. Inför beteckningar enligt nedanstående tabell: är desamma i s Serie Antal observationer av Antal försök A 1 A 2 A 3 A r 1 x 11 x 12 x 13 x 1r n 1 2 x 21 x 22 x 23 x 2r n s x s1 x s2 x s3 x sr n s Kolonnsumma m 1 m 2 m 3 m r N ) 2 s r x ij n im j Bilda Q = N n i m j. N Q är ett utfall av en approximativt χ 2 r 1) s 1))-fördelad stokastisk variabel om n i m j /N 5, för alla i = 1, 2,..., s och j = 1, 2,..., r. Oberoendetest Antag att värdemängden för den stokastiska variabeln X kan delas in i kategorierna A 1, A 2,..., A r och att värdemängden för den stokastiska variabeln Y kan delas in i kategorierna B 1, B 2,..., B s. Vi vill testa om de stokastiska variablerna X och Y är oberoende. Antal observationer A 1 A 2 A 3 A r Radsumma B 1 x 11 x 12 x 13 x 1r n 1 B 2 x 21 x 22 x 23 x 2r n B s x s1 x s2 x s3 x sr n s Kolonnsumma m 1 m 2 m 3 m r N Samma teststorhet och fördelning kan användas som vid homogenitetstest. 8
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Repetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Lufttorkat trä Ugnstorkat trä
Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:
TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski
FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem
LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Thomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
SF1901: Medelfel, felfortplantning
SF1901: Medelfel, felfortplantning Jan Grandell & Timo Koski 15.09.2011 Jan Grandell & Timo Koski () Matematisk statistik 15.09.2011 1 / 14 Felfortplantning Felfortplantning kallas propagation of error
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna
Del I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1
Avd. Matematisk statistik TENTAMEN I SF1920/SF1921 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 11 MARS 2019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)
Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:
SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Johan Lindström Repetition Johan Lindström - johanl@maths.lth.se FMS86/MASB2 1/44 Begrepp S.V. Fördelning Väntevärde Gauss CGS Grundläggande begrepp (Kap.
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-
a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...
Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 5:E APRIL 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
Föreläsning 5: Hypotesprövningar
Föreläsning 5: Hypotesprövningar Johan Thim (johan.thim@liu.se) 24 november 2018 Vi har nu studerat metoder för hur man hittar lämpliga skattningar av okända parametrar och även stängt in dessa skattningar
SF1915 Sannolikhetsteori och statistik 6 hp. χ 2 -test
SF1915 Sannolikhetsteori och statistik 6 hp Föreläsning 12 χ 2 -test Jörgen Säve-Söderbergh Anpassningstest test av given fördelning n oberoende försök med r möjliga olika utfall Händelse A 1 A 2... A
TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.
Formel- och tabellsamling i matematisk statistik c Martin Singull 2 Innehåll 3.3 Tukey s metod för parvisa jämförelser.................... 14 1 Sannolikhetslära 5 1.1 Några diskreta fördelningar.........................
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90 TILLÄMPAD STATISTIK, ONSDAGEN DEN 7:E APRIL 09 KL 8.00 3.00. Examinator: Björn-Olof Skytt, 08-790 8649 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Exempel på tentamensuppgifter
STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
f(x) = 2 x2, 1 < x < 2.
Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790
(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.
b) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p)
Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 13:E AUGUSTI 2018 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlenko, 08-790 84 66 Examinator
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-
Tentamenskrivning för TMS6, Matematisk Statistik. Onsdag fm den 1 maj, 217. Examinator: Marina Axelson-Fisk. Tel: 1-7724996 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte (bifogas).
Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...
Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Tenta i Statistisk analys, 15 december 2004
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 8. Statistik: Mer om maximum likelihood, minsta kvadrat. Linjär regression, medelfel, felfortplantning Jan Grandell & Timo Koski 24.09.2008 Jan Grandell
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 I Punktskattningar I Egenskaper I Väntevärdesriktig I E ektiv I Konsistent
(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för
Sannolikheter och kombinatorik
Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter
TAMS65 - Föreläsning 12 Test av fördelning
TAMS65 - Föreläsning 12 Test av fördelning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö12 1/37 Det
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 1:A JUNI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel: miniräknare,
TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test
TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö8
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 14 13 december 2016 1 / 20 Idag χ 2 -metoden Test av given fördelning Homogenitetstest 2 / 20 Idag χ 2 -metoden Test av given fördelning
Lycka till!
Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 20 september 2017 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/20 : Poisson & Binomial för diskret data Johan
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF11/SF114/SF115/SF116 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 0:E DECEMBER 018 KL 8.00 13.00. Examinator för SF114/SF116: Tatjana Pavlenko, 08-70 84 66 Examinator
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901,SF1905,SF1907 OCH SF1908 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 12:E JANUARI 2011 KL 14.00 19.00. Kursledare: Gunnar Englund för D och I, tel. 7907416.
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Uppgift 1. f(x) = 2x om 0 x 1
Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling
SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning
Enkel och multipel linjär regression
TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)
Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och
Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända
Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling
Föreläsning 11, Matematisk statistik Π + E
Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, Matematisk statistik Π + E Johan Lindström 27 Januari, 2015 Johan Lindström - johanl@maths.lth.se FMS012 F11 1/19 Repetition
Föreläsning 12, FMSF45 Hypotesprövning
Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare