SF1901: Sannolikhetslära och statistik
|
|
- Ann-Charlotte Eklund
- för 8 år sedan
- Visningar:
Transkript
1 SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski Jan Grandell & Timo Koski Matematisk statistik / 39
2 Repetition: Flerdimensionella stokastiska variabler Det två-dimensionella fallet: Låt (X,Y) vara en två-dimensionell s.v. F X,Y (x,y) = P(X x, Y y) kallas (den simultana) fördelningsfunktionen för (X, Y). F X (x) = P(X x) = P(X x, Y ) = F X,Y (x, ) kallas den marginella fördelningsfunktionen för X. F Y (y) = F X,Y (,y) kallas den marginella fördelningsfunktionen för Y. Jan Grandell & Timo Koski Matematisk statistik / 39
3 Repetition: Flerdimensionella stokastiska variabler Definition X och Y är oberoende stokastiska variabler om F X,Y (x,y) = F X (x)f Y (y) obs! Detta bör gälla för ALLA (x,y). Jan Grandell & Timo Koski Matematisk statistik / 39
4 Repetition: Simultan sannolikhetsfunktion (X,Y) är en diskret två-dimensionell s.v., om där F X,Y (x,y) = j=0k=0 0 j [x] 0 k [y] p X,Y (j,k)dudv p X,Y (j,k) = 1, p X,Y (j,k) 0. Funktionen p X,Y (i,k) kallas den simultana sannolikhetsfunktionen för (X,Y). Jan Grandell & Timo Koski Matematisk statistik / 39
5 Simultan täthet (X,Y) är en kontinuerlig två-dimensionell s.v., om där F X,Y (x,y) = x y f X,Y (u,v)dudv f X,Y (x,y)dxdy = 1, f X,Y (x,y) 0. Funktionen f X,Y (x,y) kallas den simultana täthetsfunktionen för (X,Y). Jan Grandell & Timo Koski Matematisk statistik / 39
6 Repetition: Marginalfördelningar fört kontinuerliga s.v.er Låt (X,Y) vara en kontinuerlig två-dimensionell s.v.. Den marginella fördelningsfunktionen för Y är och F Y (y) = F X,Y (,y) = f Y (y) = d dy F Y(y) = y f X,Y (x,v)dxdv f X,Y (x,y)dx är den marginella täthetsfunktionen för Y. Analogt är f X (x) = d dx F X(x) = den marginella täthetsfunktionen för X. f X,Y (x,y)dy Jan Grandell & Timo Koski Matematisk statistik / 39
7 Oberoende stokastiska variabler Definition X och Y är oberoende stokastiska variabler om för alla (x,y). f X,Y (x,y) = f X (x)f Y (y) Jan Grandell & Timo Koski Matematisk statistik / 39
8 Ett exempel (X, Y) är en 2-dimensionell st.v. med den simultana sannolikhetstätheten { 24xy 0 x 1,0 y 1,x +y 1, f X,Y (x,y) = 0 för övrigt. Vi checkar att f X,Y(x,y)dxdy = x 1 x 0 ydxdy= x(1 x)2 dx = (x 2x2 +x 3 )dx = 12 ( ) ( 4 = ) 12 = 1, s.s.b. Jan Grandell & Timo Koski Matematisk statistik / 39
9 Ett exempel (forts.): marginella sl-tätherna f X (x) = [ y 2 = 24x 2 ] 1 x 0 f X,Y (x,y)dy = 24x 1 x 0 ydy = 12x(1 x) 2, 0 x 1. P.s.s f Y (y) = 12y(1 y) 2, 0 y 1. Detta ger E [Y] = E [X] = xf X (x)dx = 12 x 2 (1 x) 2 dx = Jan Grandell & Timo Koski Matematisk statistik / 39
10 Ett exempel (X, Y) är en 2-dimensionell st.v. med den simultana sannolikhetstätheten { 24xy 0 x 1,0 y 1,x +y 1, f X,Y (x,y) = 0 för övrigt. Vi checkar att f X,Y(x,y)dxdy = x 1 x 0 ydxdy= x(1 x)2 dx = (x 2x2 +x 3 )dx = 12 ( ) ( 4 = ) 12 = 1, s.s.b. Jan Grandell & Timo Koski Matematisk statistik / 39
11 Ett exempel (forts.): oberoende f X (x) = 12x(1 x) 2, 0 x 1. f Y (y) = 12y(1 y) 2, 0 y 1. ( f X,Y (1/2,1/2)) = 6,f X (1/2)f Y (1/2) = ) 2 = 4 ( ) 3 2 = D.v.s., f X,Y (1/2,1/2)) = f X (1/2)f Y (1/2), och X och Y är beroende. Jan Grandell & Timo Koski Matematisk statistik / 39
12 Väntevärdet av g(x,y) Sats Låt (X,Y) vara en tvådimensionell s.v. Då gäller { E [g(x,y)] = g(x,y)f X,Y(x,y)dxdy för (X,Y) kontinuerlig, k=0 j=0 g(k,j)f X,Y(k,j) för (X,Y) diskret. Jan Grandell & Timo Koski Matematisk statistik / 39
13 Väntevärdet av g(x,y) = X +Y Sats Låt (X,Y) vara en tvådimensionell s.v. Då gäller E [X +Y] = E [X]+E [Y] Bevis. Låt (X,Y) vara en kontinuerlig tvådimensionell s.v.. Den föregående satsen visar med g(x,y) = x +y att = = x xf X,Y (x,y)dxdy + (x +y)f X,Y (x,y)dxdy = f X,Y (x,y)dydx + xf X (x)dx + y yf X,Y (x,y)dxdy f X,Y (x,y)dxdy yf Y (y)dy = E [X]+E [Y] Jan Grandell & Timo Koski Matematisk statistik / 39
14 Kovarians och korrelationskoefficient Låt (X,Y) vara en tvådimensionell s.v. där vi är intresserade av sambandet mellan Xs och Ys variation. Det kan vara natuligt att betrakta variablerna X µ X och Y µ Y. Vi skiljer på fallen då X och Y samvarierar resp. motverkar varandra, dvs. då ett stort/litet värde på X gör ett stort/litet värde på Y troligt resp. ett stort/litet värde på X gör ett litet/stort värde på Y troligt. Jan Grandell & Timo Koski Matematisk statistik / 39
15 Kovariansen mellan X och Y Betraktar vi nu variabeln (X µ X )(Y µ Y ), så innebär detta att den i första fallet, eftersom + + = + och = +, att den har en tendens att vara positiv. På motsvarande sätt, eftersom + = och + =, har den i andra fallet en tendens att vara negativ. Det som vi, lite slarvigt, har kallat tendens, kan vi ersätta med väntevärde. Vi leds då till följande definition. Definition Kovariansen mellan X och Y är där µ X = E(X) och µ Y = E(Y). C(X,Y) = E[(X µ X )(Y µ Y )], Jan Grandell & Timo Koski Matematisk statistik / 39
16 Kovariansen mellan X och Y Sats Kovariansen mellan X och Y är där µ X = E(X) och µ Y = E(Y). Bevis. : C(X,Y) = E[XY] µ X µ Y, C(X,Y) = E[(X µ X )(Y µ Y )] = E[XY X µ Y µ X Y + µ X µ Y ] = E[XY] E[X µ Y ] E[µ X Y]+µ X µ Y ] = E[XY] µ Y E[X] µ X E[Y]+µ X µ Y = E[XY] µ Y µ X µ X µ Y + µ X µ Y = E[XY] µ Y µ X Jan Grandell & Timo Koski Matematisk statistik / 39
17 Ett exempel (forts.): kovarians E[XY] = Detta ger från ovan = 8 xyf X,Y (x,y)dxdy = x 2 (1 x) 3 dx = x 24x 2 y 2 dydx C(X,Y) = E[XY] µ X µ Y = = Ett negativt samband. 0 Jan Grandell & Timo Koski Matematisk statistik / 39
18 Korrelationskoefficienten mellan X och Y Kovariansen kan sägas ha fel sort. Det verkar rimligt att ett mått på ett så abstrakt begrepp som samvariation skall vara sortfritt. Det vanligaste måttet är korrelationskoefficienten. Definition Korrelationskoefficienten mellan X och Y är ρ = ρ(x,y) = C(X,Y) D(X)D(Y). Man kan visa att ρ 1, där ρ = ±1 betyder att det finns ett perfekt linjärt samband, dvs. Y = ax +b. Jan Grandell & Timo Koski Matematisk statistik / 39
19 Korrelationskoefficienten mellan X och Y Sats Om X och Y är oberoende så är de okorrelerade, dvs. ρ(x,y) = 0. Omvändningen gäller ej, dvs. okorrelerade variabler kan vara beroende. Jan Grandell & Timo Koski Matematisk statistik / 39
20 Korrelationskoefficienten mellan X och Y Jan Grandell & Timo Koski Matematisk statistik / 39
21 Korrelationskoefficienten mellan X och Y Sats Om X och Y är oberoende så är de okorrelerade, dvs. ρ(x,y) = 0. Bevis: Per definition E[XY] = och p.g.a. oberoendet = = xf X (x)dx xyf X,Y (x,y)dxdy = xyf X (x)f Y (y)dxdy = yf Y (y)dy = = E(X) E(Y) = µ X µ Y. Då C(X,Y) = E[XY] µ X µ Y = 0. Jan Grandell & Timo Koski Matematisk statistik / 39
22 Ett exempel (forts.): korrelation E [ Y 2] = E [ X 2] = 1 Således är V(Y) = V(X) = = Detta ger från ovan 0 1 x 2 f X (x)dx = 12 x 3 (1 x) 2 dx = ρ = ρ(x,y) = C(X,Y) D(X)D(Y) = = 2 3 = Jan Grandell & Timo Koski Matematisk statistik / 39
23 Exempel Den simultana sannolikhetsfunktionen för stokastiska variablerna X och Y med p X,Y (j,k) X /Y Marginalfördelning för X: p X (0) = = 0.2, p X (1) = = 0.2 p X (2) = = 0.2, p X (3) = = 0.4 Jan Grandell & Timo Koski Matematisk statistik / 39
24 Exempel (forts.) På samma sätt fås marginalfördelning för Y: p Y (0) = 0.2,p Y (1) = 0.2 p Y (2) = 0.2,p Y (3) = 0.4. X och Y är INTE oberoende, ty, t.ex., p X (0) p Y (0) = = 0.04 = 0.2 = p X,Y (0,0) Jan Grandell & Timo Koski Matematisk statistik / 39
25 Exempel (forts.): BETINGADE FÖRDELNINGAR Materialet om betingade fördelningar kan överhoppas: I detta exempel p X Y=k (j) def = p X,Y (j,k),j = 0,1,2,3 p Y (k) p Y X=j (k) def = p X,Y (j,k),k = 0,1,2,3 p X (j) p Y X=2 (0) = p X,Y (2,0) p X (2) p Y X=2 (1) = p X,Y (2,1) p X (2) p Y X=2 (2) = p X,Y (2,2) p X (2) p Y X=2 (3) = p X,Y (2,3) p X (2) = = 0 = = 1 2 = = 1 2 = = 0 Jan Grandell & Timo Koski Matematisk statistik / 39
26 Exempel (forts.): BETINGADE FÖRDELNINGAR och p X Y=0 (0) = p X,Y (0,0) p Y (0) = = 1 p X Y=0 (1) = p X Y=0 (2) = p X Y=0 (3) = 0 Jan Grandell & Timo Koski Matematisk statistik / 39
27 Exempel (forts.):lts & BETINGADE FÖRDELNINGAR Utifrån definitionerna följer vidare att vi har p X (k) = p Y (j) = 3 3 p Y (j)p X Y=j (k) = p X,Y (k,j). j=0 j=0 3 3 p X (k)p Y X=k (j) = p X,Y (k,j). k=0 k=0 Jan Grandell & Timo Koski Matematisk statistik / 39
28 Exempel (forts.): E(X) = = 1.8. samt E(Y) = 1.8. E ( X 2) = = 4.6. V(X) = E ( X 2) E (X) 2 = = 1.36 = V(Y). Jan Grandell & Timo Koski Matematisk statistik / 39
29 Exempel (forts.): Kovarians och korrelation Kovariansen E(X Y) = = 4.5 C(X,Y) = E(X Y) E (X)E (Y) = = 1.26 Korrelationskoefficienten ρ(x,y) = C(X,Y) V(X) V(Y) = Vad säger detta? = = Jan Grandell & Timo Koski Matematisk statistik / 39
30 Mer om väntevärden Sats Låt (X,Y) vara en tvådimensionell s.v. Då gäller (1) E(aX +by) = ae(x)+be(y); (2) V(aX +by) = a 2 V(X)+b 2 V(Y)+2abC(X,Y). Bevis. (1) har visats tidigare. Jan Grandell & Timo Koski Matematisk statistik / 39
31 Mer om väntevärden: Bevis av (2) (2) fås av följande V(aX +by) = E[(aX +by aµ X bµ Y ) 2 ] = E[(aX aµ X +by bµ Y ) 2 = E[a 2 (X µ X ) 2 +b 2 (Y µ Y ) 2 +2ab(X µ X )(Y µ Y )] = a 2 V(X)+b 2 V(Y)+2abC(X,Y). Jan Grandell & Timo Koski Matematisk statistik / 39
32 Mer om väntevärden Följdsats Låt X och Y vara två oberoende (okorrelerade räcker) s.v. Då gäller E(X +Y) = E(X)+E(Y) V(X +Y) = V(X)+V(Y) E(X Y) = E(X) E(Y) V(X Y) = V(X)+V(Y). Jan Grandell & Timo Koski Matematisk statistik / 39
33 Mer om väntevärden Detta går att utvidga till godtyckligt många variabler: Sats Låt X 1,...,X n vara oberoende (okorrelerade räcker) s.v. och sätt Y = c 1 X c n X n. Då gäller och E(Y) = c 1 E(X 1 )+...+c n E(X n ) V(Y) = c 2 1 V(X 1)+...+c 2 n V(X n) Jan Grandell & Timo Koski Matematisk statistik / 39
34 Binomialfördelningen Antag att vi gör ett försök där en händelse A, med sannolikheten p = P(A), kan inträffa. Vi upprepar försöken n gånger, där försöken är oberoende. Sätt X = antalet gånger som A inträffar i de n försöken. Vi säger då att X är binomialfördelad med parametrarna n och p, eller kortare att X är Bin(n, p)-fördelad. Vi har ( ) n p X (k) = p k q n k, för k = 0,...,n, k där q = 1 p. Jan Grandell & Timo Koski Matematisk statistik / 39
35 X Bin(n,p), X = U U n Låt U 1,...,U n vara s.v. definierade av { 0 om A inträffar i försök nummer i, U i = 1 om A inträffar i försök nummer i. U 1,...,U n är oberoende och att X = U U n. Jan Grandell & Timo Koski Matematisk statistik / 39
36 X Bin(n,p), X = U U n Då och E(U i ) = 0 (1 p)+1 p = p V(U 1 ) = E(U 2 i ) E(U i ) 2 = E(U i ) E(U i ) 2 = p p 2 = p(1 p) så följer E(X) = ne(u i ) = np och V(X) = nv(u i ) = npq. Jan Grandell & Timo Koski Matematisk statistik / 39
37 Arimetiskt medelvärde X= 1 n n X i i=1 Sats Låt X 1,X 2,...,X n vara oberoende och likafördelade s.v. med väntevärde µ och standardavvikelse σ. Då gäller att E(X) = µ, V(X) = σ2 n och D(X) = σ n. Uttrycket X 1,X 2,...,X n är likafördelade betyder att de stokastiska variablernas fördelningar, dvs. att de stokastiska variablernas statistiska egenskaper, är identiska. Utfallen av variablerna varierar dock. Jan Grandell & Timo Koski Matematisk statistik / 39
38 Stora talens lag X= 1 n n i=1 X i Sats Stora talens lag För varje ε > 0 gäller Bevis. Enl. Tjebysjovs olikhet gäller P( X µ > ε) 0 då n. då n. P( X µ > ε) V(X) ε 2 = σ2 nε 2 0 Jan Grandell & Timo Koski Matematisk statistik / 39
39 Stora talens lag: ett frimärke från Schweiz Jan Grandell & Timo Koski Matematisk statistik / 39
SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.
SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Väntevärde och varians
TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Matematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende
Föreläsning 6, Matematisk statistik Π + E
Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 6 Johan Lindström oktober 8 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Summa
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
Stokastiska vektorer
TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z
SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Matematisk statistik 9 hp Föreläsning 4: Flerdim
Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler
Statistiska metoder för säkerhetsanalys
F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts
Föreläsning 6, FMSF45 Linjärkombinationer
Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)
Sannolikhet och statistik XI
April 219 Betingade väntevärden. Vi ska säga att E[Y X = x] är väntevärdet av den sv som samma förd som Y givet X = x. Definition: Y diskret: E[Y X = x] = y k V Y y k p Y X (y k x), Y kont: E[Y X = x]
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Stokastiska vektorer och multivariat normalfördelning
Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det
TMS136. Föreläsning 5
TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3
F7 forts. Kap 6. Statistikens grunder, 15p dagtid. Stokastiska variabler. Stokastiska variabler. Lite repetition + lite utveckling av HT 2012.
F7 forts. Kap 6 Statistikens grunder, 15p dagtid HT 01 Lite repetition + lite utveckling av Stokastisk variabel Diskreta och kontinuerliga sv Frekvensfunktion (diskr.), Täthetsfunktion (kont.) Fördelningsfunktion
TENTAMEN I STATISTIKENS GRUNDER 1
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Kovarians och kriging
Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)
TMS136. Föreläsning 5
TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Stokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,
SF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik
FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK
2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = /
Föreläsning 5: Matstat AK för I, HT-8 MATEMATISK STATISTIK AK FÖR I HT-8 FÖRELÄSNING 5: KAPITEL 4.6 7: SUMMOR, MAXIMA OCH ANDRA FUNKTIONER AV S.V. KAPITEL 5. : VÄNTEVÄRDEN, LÄGES- OCH SPRIDNINGSMÅTT EXEMPEL
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Oberoende stokastiska variabler
Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen
Föresläsningsanteckningar Sanno II
Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala
Föreläsning 7: Stokastiska vektorer
Föreläsning 7: Stokastiska vektorer Johan Thim johanthim@liuse oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler
Kapitel 5 Multivariata sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator
Föreläsningsanteckningar i Matematisk Statistik. Jan Grandell
Föreläsningsanteckningar i Matematisk Statistik Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas som kursmaterial.
6. Flerdimensionella stokastiska variabler
6 Flerdimensionella stokastiska variabler 61 Simultana fördelningar Den simultana fördelningsfunktionen av X och Y, vilka som helst två stokastiska variabler, definieras F(a,b) = F X,Y (a,b) = P(X a,y
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik
Bengt Ringnér. September 20, Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07.
Väntevärden Bengt Ringnér September 0, 007 1 Inledning Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07. Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Föreläsning 15: Försöksplanering och repetition
Föreläsning 15: Försöksplanering och repetition Matematisk statistik Chalmers University of Technology Oktober 19, 2015 Utfall och utfallsrum Slumpmässigt försök Man brukar säga att ett slumpmässigt försök
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Bengt Ringnér. October 30, 2006
Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller
TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar).
Tekniska högskolan i Linköping Matematiska institutionen Matematisk statistik,jan Olheim MATEMATIK:Statistik 9MA31 STN, 9MA37 STN TENTAMEN MÅNDAGEN DEN OKTOBER 01 KL 14.00-18.00. Hjälpmedel:Formler och
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
2.1 Mikromodul: stokastiska processer
2. Mikromodul: stokastiska processer 9 2. Mikromodul: stokastiska processer 2.. Stokastiska variabler En stokastiskt variabel X beskrivs av dess täthetsfunktion p X (x), vars viktigaste egenskaper sammanfattas
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Några extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk