Statistiska metoder för säkerhetsanalys
|
|
- Bernt Sandberg
- för 6 år sedan
- Visningar:
Transkript
1 F6: Betingade fördelningar
2 Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts för år 1 är också en s.v. som betecknas X 1. En tänkbar modell för lasten är Gumbelfördelning. Intressanta frågor: Vad är slh att linan håller under det första året, d.v.s. vad är P(Y > X 1 )? Antag att linan höll första året d.v.s. händelsen Y > X 1 har skett. Vad är då sannolikheten att linan håller år 2 också, d.v.s. vad är sannolikheten P(Y > X 2 Y > X 1 ) där X 2 är andra årets last? Vi vet att linan inte kan vara hur klen som helst eftersom den ju klarade den last den blev utsatt för första året. Hur kan vi modifiera fördelningen för styrkan för att ta hänsyn till detta? Se avsnitt (s ) i boken för en ordentlig genomgång.
3 Vind Simultan Marginell Oberoende Betingad Exempel: Vindmätning I ett område noterar man antal dagar per år som man har vindar som överstiger 60 km/h. Man har två typer av instrument för vindmätningar: X = antal stormdagar per år med noggrann vindmätning, Y = antal stormdagar per år med mindre noggrann vindmätning. Som ett första steg i en eventuell kalibrering har man, genom att studera data under en lång följd av år, uppskattat den simultana sannolikhetsfunktionen för X och Y. Y = 0 Y = 1 Y = 2 Y = 3 X = X = X = X = = 1
4 Vind Simultan Marginell Oberoende Betingad Ex: Vind (forts) (a) Vad är sannolikheten att det mindre noggranna instrumentet visar 0 stormdagar samtidigt som det noggranna visar 1 stormdag? (b) Vad är sannolikheten att det noggranna instrumentet visar 1 stormdag? (c) Vad är den marginella sannolikhetsfördelningen för X? (d) Vad är den marginella sannolikhetsfördelningen för Y? (e) Är X och Y oberoende? (f) Om vi vet att det mindre noggranna instrumentet visar 1 stormdag, vad är då slh att det noggranna instrumentet kommer att visa 2 stormdagar? (g) Vad är den betingade sannolikhetsfunktionen för Y givet att X = 2?
5 Vind Simultan Marginell Oberoende Betingad Tvådimensionella fördelningar Vi studerar X och Y samtidigt och vill veta deras simultana variation: F(x, y) = F X,Y (x, y) = P(X x, Y y) är den tvådimensionella fördelningsfunktionen. Diskreta s.v.: Simultan sannolikhetsfunktion Den simultana sannolikhetsfunktionen för X och Y definieras som: p jk = P(X = j Y = k) = P(X = j, Y = k) Ex: Vindmätning (a) Vad är sannolikheten att det mindre noggranna instrumentet visar 0 stormdagar samtidigt som det noggranna visar 1 stormdag? P(X = 1, Y = 0) = p 10 = 0.04
6 Vind Simultan Marginell Oberoende Betingad Diskret: Marginell sannolikhetsfunktion Den marginella sannolikhetsfunktionen för X fås som: P(X = j) = k P(X = j, Y = k) Ex: Vindmätning (forts) (b) Vad är sannolikheten att det noggranna instrumentet visar 1 stormdag? P(X = 1) = p 10 + p 11 + p 12 + p 13 = = = (c) Vad är den marginella sannolikhetsfördelningen för X? P(X = 0) = p 00 + p 01 + p 02 + p 03 = , P(X = 1) = 0.408, P(X = 2) = p 20 + p 21 + p 22 + p 23 = , P(X = 3) = p 30 + p 31 + p 32 + p 33 =
7 Vind Simultan Marginell Oberoende Betingad Ex: Vindmätning (forts) (c)+(d) (d) Vad är den marginella sannolikhetsfördelningen för Y? P(Y = 0) = p 00 + p 10 + p 20 + p 30 = , P(Y = 1) = p 01 + p 11 + p 21 + p 31 = , P(Y = 2) = p 02 + p 12 + p 22 + p 32 = , P(Y = 3) = p 03 + p 13 + p 23 + p 33 = Y = 0 Y = 1 Y = 2 Y = 3 p(x = j) X = X = X = X = P(Y = k) = 1
8 Vind Simultan Marginell Oberoende Betingad Oberoende Om P(X = j, Y = k) = P(X = j) P(Y = k) för alla j och k så är X och Y oberoende (och tvärtom). Ex: Vindmätning (forts) (e) Är X och Y oberoende? Eftersom, t.ex., P(X = 0, Y = 0) = = P(X = 0) P(Y = 0) = = så är X och Y inte oberoende.
9 Vind Simultan Marginell Oberoende Betingad Betingad sannolikhetsfunktion Den betingade sannolikhetsfunktionen för X, givet Y = k, definieras som: P(X = j Y = k) = P(X = j, Y = k) P(Y = k) Ex: Vindmätning (forts) (f) Om vi vet att det mindre noggranna instrumentet visar 1 stormdag, vad är då slh att det noggranna instrumentet kommer att visa 2 stormdagar? Definitionen ger P(X = 2 Y = 1) = P(X = 2, Y = 1) P(Y = 1) = =
10 Vind Simultan Marginell Oberoende Betingad Ex: Vindmätning (forts) (g) Vad är den betingade sannolikhetsfunktionen för Y givet att X = 2? Vi har P(Y = 0 X = 2) = P(Y = 1 X = 2) = P(Y = 2 X = 2) = P(Y = 3 X = 2) = P(X = 2, Y = 0) P(X = 2) P(X = 2, Y = 1) P(X = 2) P(X = 2, Y = 2) P(X = 2) P(X = 2, Y = 3) P(X = 2) = = , = = , = = , = = Observera att 3 k=0 P(Y = k X = 2) = 1.
11 Sprickor Vi kan också vara intresserade av andra betingade sannolikheter, t.ex. P(X j Y = k) eller P(X j Y k). Exempel: P(X 1 Y 2) = P(X 1, Y 2) P(Y 2) = p 00 + p 01 + p 02 + p 10 + p 11 + p 12 P(Y = 0) + P(Y = 1) + P(Y = 2) = Satsen om total sannolikhet Vi kan uttrycka satsen om total sannolikhet med betingade fördelningar. Sätt A k : Y = k så blir P(B) = P(B Y = k) P(Y = k) k=0
12 Sprickor Exempel: Sprickor En gammal tank har ett stort antal sprickor på ytan. Antalet sprickor anses vara Poissonfördelat med väntevärde l tankens area där l antas vara 0.01 m 2. Eftersom totala arean är 5000 m 2 blir väntevärdet i Poissonfördelningen m = 50. En automatisk maskin används för att upptäcka och laga sprickorna. Maskinen är bra så att sannolikheten att den ska hitta en spricka (och därmed laga den) är Vad är sannolikheten att minst en spricka missas?
13 Sprickor Lösning: Sätt Y = antal sprickor i tanken Po(50), dvs P(Y = k) = e 50 50k, k = 0, 1, 2,... k! och B = alla sprickor hittas. Då har vi att P(B Y = k) = P(alla k sprickorna hittas Y = k) = k P(B) = P(B Y = k) P(Y = k) = k=0 k= k e 50 50k k! = e 50 ( ) k k! k=0 = e 50 e = e = P(minst en spricka missas) = 1 P(B) = =
14 Barn Motsvarande funktioner kan definieras för kontinuerliga fördelningar: Simultan täthetsfunktion: f X,Y (x, y) Simultan fördelningsfunktion: F X,Y (x, y) = P(X x, Y y) = Marginell täthetsfunktion: f X (x) = f Y (y) = x y f X,Y (x, u) du, f X,Y (t, y) dt f X,Y (t, u) dt du Oberoende: om f X,Y (x, y) = f X (x) f Y (y) för alla värden på x och y så är X och Y oberoende (och tvärtom).
15 Barn Exempel: Födelselängd och -vikt Längd (cm) och vikt (g) noterades på 725 nyfödda barn. Tänkbar modell: X = längd är N(m x, s 2 x), Från data har vi m x = 49.8 (cm) och s x = 2.5 (cm). Y = vikt är N(m y, s 2 y), Från data har vi m y = 3343 (g) och s y = 528 (g). 8 x 10 4 Fördelning för vikten 0.2 Fördelning för längden vikt (gram) längd (cm)
16 Barn Beroende? Uppenbarligen gäller INTE att f(x, y) = f(x) f(y) 60 Oberoende? 60 Beroende! längd 50 längd vikt vikt Längd och vikt är uppenbart beroende av varandra. Hur kan vi mäta hur starkt beroendet är?
17 Kovarians Korrelation Mått på det linjära beroendet mellan X och Y Kovarians Koviariansen mellan X och Y definieras som Cov(X, Y) = E ( (X mx)(y my) ) Egenskaper: = E(X Y) E(X) E(Y) = E(X Y) mx my Cov(Y, X) = Cov(X, Y), Cov(X, X) = V(X), Cov(aX, by) = ab Cov(X, Y), V(aX + by) = a 2 V(X) + b 2 V(Y) + 2ab Cov(X, Y), Cov(X, Y) = 0 om X och Y är oberoende (men inte tvärtom!) Kovariansen har samma enhet som X Y (t.ex. gram cm).
18 Kovarians Korrelation Korrelationskoefficient Korrelationskoefficienten r är ett enhetslöst mått på kovariansen: rx,y = Cov(X, Y) V(X) V(Y), 1 rx,y 1 Om r = ±1 är X och Y perfekt linjärt beroende. Om vi har mätningarna (x 1, y 1 ),..., (x n, y n ) kan vi skatta r med n rx,y = i=1 (x i x)(y i ȳ) n i=1 (x i x) 2 n i=1 (y i ȳ) 2 Ex: r längd,vikt = 0.75.
19 Kovarians Korrelation 3 X,Y N(0,1 2 ), ρ = 0 3 X,Y N(0,1 2 ), ρ = y 0 y x x 3 X,Y N(0,1 2 ), ρ = X,Y N(0,1 2 ), ρ = y 0 y x x
20 Diskret Total sannolikhet Kont. Beroendema tt Kovarians Korrelation Beroende? Korrelation? 6 4 y x Statistiska metoder fo r sa kerhetsanalys 5
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
Kapitel 5 Multivariata sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara
Matematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.
SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Matematisk statistik 9 hp Föreläsning 4: Flerdim
Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
TENTAMEN I STATISTIKENS GRUNDER 1
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik
FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK
Några extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar).
Tekniska högskolan i Linköping Matematiska institutionen Matematisk statistik,jan Olheim MATEMATIK:Statistik 9MA31 STN, 9MA37 STN TENTAMEN MÅNDAGEN DEN OKTOBER 01 KL 14.00-18.00. Hjälpmedel:Formler och
Stokastiska vektorer
TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig
F7 forts. Kap 6. Statistikens grunder, 15p dagtid. Stokastiska variabler. Stokastiska variabler. Lite repetition + lite utveckling av HT 2012.
F7 forts. Kap 6 Statistikens grunder, 15p dagtid HT 01 Lite repetition + lite utveckling av Stokastisk variabel Diskreta och kontinuerliga sv Frekvensfunktion (diskr.), Täthetsfunktion (kont.) Fördelningsfunktion
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Statistiska metoder för säkerhetsanalys
F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Stokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Väntevärde och varians
TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som
SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler
Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Sannolikhet och statistik XI
April 219 Betingade väntevärden. Vi ska säga att E[Y X = x] är väntevärdet av den sv som samma förd som Y givet X = x. Definition: Y diskret: E[Y X = x] = y k V Y y k p Y X (y k x), Y kont: E[Y X = x]
F10 Kap 8. Statistikens grunder, 15p dagtid. Binomialfördelningen 4. En räkneregel till. Lite repetition HT Sedan
01-09-7 F10 Kap 8 Statistikens grunder, 15p dagtid HT 01 Lite repetition Kovarians Binomial- och Poissonfördelning Täthetsfunktion (kont.) Fördelningsfunktion (kont.) Arean under en kurva Sedan Normalfördelningen
Stokastiska vektorer och multivariat normalfördelning
Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen
Laboration 2: Sannolikhetsteori och simulering
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Laboration 2: Sannolikhetsteori och simulering
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT13 Laboration 2: Sannolikhetsteori och simulering Syftet med den här
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Simulering av elmarknader. EG2205 Föreläsning 11, vårterminen 2016 Mikael Amelin
Simulering av elmarknader EG2205 Föreläsning 11, vårterminen 2016 Mikael Amelin 1 Kursmål Tillämpa stokastisk produktionskostnadssimulering och Monte Carlo-simulering för att beräkna förväntad driftkostnad
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Föreläsning 6, Matematisk statistik Π + E
Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av
Kovarians och kriging
Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Föreläsning 7: Stokastiska vektorer
Föreläsning 7: Stokastiska vektorer Johan Thim johanthim@liuse oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
Slumpvariabler och sannolikhetsfördelningar
och sannolikhetsfördelningar Föreläsning 4 Sannolikhet och Statistik 5 hp Fredrik Jonsson April 2010 Översikt 1. Verklighetsanknutna exempel. Definition relativt utfallsrum. 2. Sannolikhetsfördelningar
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
(x) = F X. och kvantiler
Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i
F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet
TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = /
Föreläsning 5: Matstat AK för I, HT-8 MATEMATISK STATISTIK AK FÖR I HT-8 FÖRELÄSNING 5: KAPITEL 4.6 7: SUMMOR, MAXIMA OCH ANDRA FUNKTIONER AV S.V. KAPITEL 5. : VÄNTEVÄRDEN, LÄGES- OCH SPRIDNINGSMÅTT EXEMPEL
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Mer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 6 Johan Lindström oktober 8 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Summa
Grundläggande matematisk statistik
Grundläggande matematisk statistik Flerdimensionella Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Flerdimensionella Ett slumpförsök kan ge upphov till flera (s.v.): kast med
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z
Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013
Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Tentamen i Sannolikhetslära och statistik Kurskod S0008M
Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-06-04 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson,
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Föreläsning 4, Matematisk statistik för M
Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det
LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Föreläsning 6, FMSF45 Linjärkombinationer
Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)
Grundläggande matematisk statistik
Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
SF1901: Övningshäfte
SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på
19.1 Funktioner av stokastiska variabler
9. Funktioner av stokastiska variabler 9.. Oberoende stokastiska variabler Som vi minns innebär P(A B) = P(A) P(B) att händelserna A och B är oberoende. Låt A vara händelsen att X < x och B vara händelsen
2.1 Mikromodul: stokastiska processer
2. Mikromodul: stokastiska processer 9 2. Mikromodul: stokastiska processer 2.. Stokastiska variabler En stokastiskt variabel X beskrivs av dess täthetsfunktion p X (x), vars viktigaste egenskaper sammanfattas
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga