Laboration 2: Sannolikhetsteori och simulering
|
|
- Britt Larsson
- för 8 år sedan
- Visningar:
Transkript
1 Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen Simulering Beroende Betingade fördelningar Tvådimensionella normalfördelade stokastiska variabler Funktioner av stokastiska variabler Datamaterial och specialrutiner finns att hämta på kursens hemsida: 1 Förberedelseuppgifter Som förberedelse till laborationen bör du läsa igenom Kapitel 3.10, 4.5, 4.8, 5 och 7, samt hela laborationshandledningen. Repetera dessutom det som sades om Gauss approximationsformler på föreläsning 7. Till laborationens start har du med dig lösningar till förberedelseuppgifterna (a) (f): (a) Vi köper en påse med 7 solrosfrön. På baksidan i den finstilta texten står det att grobarheten är 75 %. Skriv upp sannolikhetsfunktionen för antalet frön som kommer att gro. (Behövs i 2.1) (b) Skriv upp sannolikhetsfunktionen för en Po(μ)-fördelad stokastisk variabel. (Behövs i 2.2) (c) Om X och Y är oberoende Po(μ)-fördelade variabler, vilken fördelning har då X+Y? (Behövs i 2.2) (d) Om vi har p X (k) och p Y X (y k), hur kan vi då beräkna p Y (y)? (Behövs i 2.2) (e) Definiera följande begrepp: oberoende stokastiska variabler, väntevärde, varians, kovarians, korrelation och betingad täthetsfunktion. (Behövs i 3.1 2). (f) Skriv upp den simultana täthetsfunktionen för X och Y om X N(μ X, σ X ) och Y N(μ Y, σ Y ) och X och Y är oberoende av varandra. (Behövs i 3.2)
2 2 Laboration 2, Matstat AK för Π och E, HT14/VT15 2 Diskret fördelning 2.1 Simulering av grobarhet hos solrosfrön Detta är en fortsättning av förberedelseuppgift (a). Vi vill simulera antalet frön som kommer att gro bland de sju fröna i påsen. Det kan vi göra på två sätt. Det mest rättframma är att simulera 7 frön och räkna antalet som gror. Funktionen rand(7,1) ger en kolonnvektor med 7 rektangelfördelade slumptal, U, mellan 0 och 1. För att sannolikheten att ett frö kommer att gro skall bli p kan vi helt enkelt se efter om U p. I så fall kommer fröet att gro. Om U > p så kommer det inte att gro. För att få reda på antalet frön som kommer att gro bland de 7 summerar vi den resulterande 0/1-variabeln: >> U=rand(7,1) >> U<=0.75 >> X=sum(U<=0.75) Ett smidigare sätt är att utnyttja att vi vet att antalet frön som kommer att gro är Bin(7, 0.75)-fördelat (enligt förberedelseuppgift (a)). Då kan vi simulera X direkt med hjälp av matlabs färdiga rutiner: >> help binornd >> X=binornd(7,0.75) Gör om proceduren några gånger. Antalet frön som kommer att gro varierar uppenbarligen från gång till gång, dvs från påse till påse. För att se hur vanligt det är med olika antal frön som kommer att gro simulerar vi 20 påsar och ritar ett stolpdiagram. Vi kan också rita in sannolikhetsfunktionen i samma diagram. Den heter binopdf (pdf uttyds Probability Density Function, dvs sannolikhets/täthets-funktion) i matlab. >> help binopdf >> X=binornd(7,0.75,20,1) >> N=hist(X,0:7) % vi vet att resultatet bara kan bli 0,...,7 >> bar(0:7,[n/20;binopdf(0:7,7,0.75)] ) 1. De blå stolparna är vårt simulerade resultat och de röda är den teoretiska sannolikhetsfunktionen. Hur stämmer det? 2. Simulera 1000 påsar istället. Stämmer det bättre nu? 2.2 Tvådimensionell fördelning med hjälp av betingade fördelningar: Skördeutfall Vi tänker oss nu att varje solrosfrö som gror ger upphov till ett Poissonfördelat antal nya frön, i medeltal 50 frön per groende solros. Frön som inte gror ger naturligtvis inga nya frön. Vi är intresserade av fördelningen för det totala antalet nya frön som en fröpåse med 7 frön och 75 % grobarhet kan ge upphov till. Vi har, som tidigare, X = antal frön som gror Bin(7, 0.75). Då kommer vi att få att den betingade fördelningen för Y = antal nya frön, givet att vi fick X = x frön som
3 Laboration 2, Matstat AK för Π och E, HT14/VT15 3 grodde, blir Y X = x Po(50 x) där x = 0,..., 7 (enligt förberedelseuppgift (c)). Fördelningen för Y ges då (enligt förberedelseuppgift (d)) av p Y (y) = P(Y = y) = k = 7 k=0 e 50k (50k)y y! P(Y = y X = k) P(X = k) = 7 p Y X (y k) p X (k) k=0 ( ) k k = Nått gräsligt! för y = 0, 1, 2,... k För att ta reda på hur denna fördelning ser ut börjar vi med att rita upp var och en av de 8 olika möjliga Poissonfördelningarna. Detta är de 8 olika varianterna av betingade fördelningar vi har (Po(0), Po(50), Po(100),..., Po(350)). Vi ritar de 8 sannolikhetsfunktionerna i samma figurfönster men i varsin delfigur för att få lite överblick: >> clf % Töm figurfönstret. >> y=0:450; >> for k=0:7 subplot(4,2,k+1) % Rita i delfigur nr 1..8 i en 4x2-plan. bar(y,poisspdf(y,50*k)) end 3. Hur ändrar sig fördelningen när antalet frön som gror, k, ändrar sig? 4. Tänk efter hur fördelningen för Y ungefär bör se ut, när vi har viktat ihop dessa 8 fördelningar med vikter enligt binomialfördelningen för antal frön som gror. Vi ska nu låta matlabberäkna sannolikhetsfunktionen för Y och rita upp den: >> py=zeros(size(y)); % Fyll först py med nollor. >> for k=0:7 % Uppdatera py(y) för varje k py=py+poisspdf(y,50*k)*binopdf(k,7,0.75); end >> figure % Nytt figurfönster så vi kan jämföra med de % 8 poissonfördelningarna i förra fönstret. >> bar(y,py) 5. Ser fördelningen ut som du hade tänkt dig? Den specialskrivna funktionen solrosor(n,p,μ), som finns på hemsidan, ritar upp sannolikhetsfunktionen för Y där Y X = x Po(μ x) och X Bin(n, p) för valfria värden på n, p och μ: >> help solrosor >> solrosor(7,0.75,50)
4 4 Laboration 2, Matstat AK för Π och E, HT14/VT15 6. Experimentera med olika värden på n, p och μ. Vad händer om antalet frön i påsen (n) minskar eller ökar? Om grobarheten (p) minskar eller ökar? Om medelantalet nya frön per frö som gror (μ) minskar eller ökar? 3 Normalfördelningen 3.1 Endimensionell normalfördelning Vi ska nu bekanta oss med normalfördelningen. Täthetsfunktionen för en normalfördelad stokastisk variabel, N(μ, σ) ges av f X (x) = 1 σ 2π e (x μ)2 /2σ 2 för < x <. Den beror alltså på två parametrar μ och σ där μ är väntevärdet i fördelningen och σ är dess standardavvikelse. Normalfördelningen är en av de fördelningar som används mest inom sannolikhets- och statistikteorin. Rita upp täthetsfunktionen för olika värden på μ och σ och se hur fördelningen påverkas när vi ändrar parametrarna: >> x = linspace(0,10,1000); % Genererar 1000 tal jämnt utspridda % mellan 0 och 10. >> plot(x,normpdf(x,2,0.5)) % N(2, 0.5) >> hold on % Lås plotten, övriga ritas i samma % bild. >> plot(x,normpdf(x,7,0.5), r ) % N(7, 0.5) i rött >> plot(x,normpdf(x,5,2), g ) % N(5, 2) i grönt >> plot(x,normpdf(x,5,0.2), y ) % N(5, 0.2) i gult >> hold off % Lås upp plotten >> title( Täthetsfunktioner, f(x) ) 7. Vad händer då μ ändras? Då σ ändras? 3.2 Tvådimensionell och betingad normalfördelning Den här avsnittet syftar till att belysa begreppet betingad fördelning. Detta är viktigt eftersom betingade fördelningar och speciellt deras väntevärden och varianser är grundläggande för all prediktion och rekonstruktion i stokastiska system. Avsikten är också att du skall träna på korrelation som mått på beroende mellan två stokastiska variabler X och Y. Vi arbetar här med en tvådimensionell normalfördelning (X, Y). Täthetsfunktionen för en tvådimensionell normalfördelning med väntevärden μ X och μ Y, C(X, Y) standardavvikelser σ X och σ Y samt korrelationskoefficient ρ = ρ(x, Y) = är σ X σ Y där K = f X,Y (x, y) = { [ 1 = K exp 2(1 ρ 2 ) 1 2πσ X σ Y 1 ρ 2. ( x μ X σ X ) 2 + ( y μ Y σ Y ) 2 2ρ( x μ X )( y μ ]} Y ), σ X σ Y
5 Laboration 2, Matstat AK för Π och E, HT14/VT Vad gäller för beroendet mellan X och Y om ρ = 0? Använd förberedelseuppgift (e) och (f) för att besvara frågan. Genom att bestämma den betingade täthetsfunktioneen f X Y (x y) = f X,Y(x, y) ser man f Y (y) att den betingade fördelningen för X givet att Y = y är en endimensionell normalfördelning med E(X Y = y) = μ X + ρ σ X σ Y (y μ Y ) V(X Y = y) = σ 2 X(1 ρ 2 ). Observera att det betingade väntevärdet är lika med μ X plus en korrektionsterm som beror linjärt av y medan den betingade variansen bara beror på ρ. (Analoga formler gäller för n-dimensionella normalfördelningar.) Du ska nu studera grafiskt hur den betingade fördelningen, väntevärdet och variansen för X ändras då vi skruvar lite på de olika parametrarna i uttrycken ovan. Med andra ord, hur ändras vår information om X efter det att vi observerat att Y = y? Till din hjälp finns två m-filer normal2d och condnormal som ger dig bilder över de inblandade täthetsfunktionerna. >>normal2d(μ X,μ Y,σ X,σ Y,ρ) ger en bild över den tvådimensionella täthetsfunktionen, dess nivåkurvor och de marginella täthetsfunktionerna för X och Y. Funktionen condnormal ger bilder av de betingade täthetsfunktionerna. >>condnormal(μ X,μ Y,σ X,σ Y,ρ, y,y) genererar t.ex. en bild över den betingade täthetsfunktionen för X givet att Y = y. 9. Undersök hur betingat väntevärde och varians påverkas för små resp. stora värden på ρ, σ X och σ Y. Vad händer om ρ = 0 eller 0.99? 10. Använd t.ex. condnormal samt hold on och studera hur tätheten ändras med ρ och σ Y. Vad händer när du ändrar ρ och σ Y? 4 Funktioner av stokastiska variabler 4.1 Konstant prisutveckling över tiden En viss typ av elektroniska komponenter har, på grund av förfinad framställningsteknik, kunnat minska i pris med en viss procent per år. Om prisändringen är konstant kan priset, P(t), vid tiden t beskrivas med sambandet P(t) = P(0) r t där P(0) är utgångpriset och r är den årliga prisändringen. Antag nu att r = 0.8, dvs att priset minskar med 20 % per år, och att P(0) = 100 kr. Plotta prisutvecklingen under de kommande 15 åren:
6 6 Laboration 2, Matstat AK för Π och E, HT14/VT15 >> r = 0.8; >> P0 = 100; >> t = linspace(0,15); >> Pt = P0*r.^t; >> plot(t,pt) Den tid, T 0.5, det tar innan priset halverats, dvs då P(T 0.5 ) = P(0) 2, fås som T 0.5 = ln 0.5. Som synes beror halveringstiden inte på utgångpriset. I det här fallet är ln r T 0.5 = ln år. ln 0.8 I verkligheten är prisfallet inte lika stort för alla tillverkare, t.ex. beroende på växelkurser, personalpolitik och råvarupriser. Det är inte orimligt att tänka sig att prisändringen, R, för en slumpmässigt vald tillverkare är Beta-fördelad så att R Beta(a, b). Vi antar då att priset inte kan öka. En Beta-fördelning har täthetsfunktion f R (r) = r a 1 (1 r) b 1 där a och b är positiva parametrar och E(R) = Γ(a + b) Γ(a)Γ(b), 0 r 1 a a + b, V(R) = E(R) b (a + b) (a + b + 1). Vi börjar med att titta på hur prisfallet kan variera när a = 16 och b = 4, dvs E(R) = = 0.8 och D(R) = (16+4)(16+4+1) Vi börjar med att titta på fördelningen för R: >> a=16; b=4; >> rr=linspace(0,1); >> frr=betapdf(rr,a,b); >> plot(rr,frr) Vi vill nu titta på prisutvecklingen för 10 olika tillverkare: >> r = betarnd(a,b,10,1); >> T50 = log(0.5)./log(r) >> for k=1:10, plot(t,p0*r(k).^t), hold on, end >> plot(t50,0, * ) >> hold off 11. Ser det ut att vara stor spridning på P(t)? På T 0.5? 12. Man kan undra hur täthetsfunktionen för T 0.5 ser ut och vad det förväntade T 0.5 kommer att bli. Hur stor spridning är det på T 0.5? Besvara dessa frågor genom att simulera T gånger, rita histogram med hist och uppskatta E(T 0.5 ) och D(T 0.5 ) med funktionerna mean och std.
7 Laboration 2, Matstat AK för Π och E, HT14/VT Gör om ovanstående simuleringar med mindre spridning på R, t.ex. a = 64 och b = 16, dvs E(R) = = 0.8 och D(R) = (64+16)( ) Hur ändrar sig E(T 0.5 ) och D(T 0.5 )?
Laboration 2: Sannolikhetsteori och simulering
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT13 Laboration 2: Sannolikhetsteori och simulering Syftet med den här
Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
Laboration 2: Sannolikhetsteori och simulering
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT11 Laboration 2: Sannolikhetsteori och simulering Syftet med den här
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR I, FMS 12, HT-8 Laboration 3: Sannolikhetsteori och simulering Syftet med den här laborationen
Laboration 2: Sannolikhetsteori och simulering
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT17 Laboration 2: Sannolikhetsteori och simulering Syftet med den här
Datorövning 2 Diskret fördelning och betingning
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 2 Diskret fördelning och betingning Syftet med den här laborationen
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Matematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
Matematisk statistik 9 hp Föreläsning 4: Flerdim
Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.
SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Föreläsning 6, Matematisk statistik Π + E
Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Statistiska metoder för säkerhetsanalys
F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
TMS136. Föreläsning 5
TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
TMS136. Föreläsning 5
TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
Datorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av
Föreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska
Föreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
Stokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik
FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Kapitel 5 Multivariata sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo
TENTAMEN I STATISTIKENS GRUNDER 1
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för CDIfysiker, FMS012/MASB03, HT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
Laboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
Projekt 1: Om fördelningar och risker
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Projekt 1: Om fördelningar och risker 1 Syfte I den första delen av detta projekt skall vi försöka
Stokastiska vektorer och multivariat normalfördelning
Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala
SF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Stokastiska vektorer
TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan
F7 forts. Kap 6. Statistikens grunder, 15p dagtid. Stokastiska variabler. Stokastiska variabler. Lite repetition + lite utveckling av HT 2012.
F7 forts. Kap 6 Statistikens grunder, 15p dagtid HT 01 Lite repetition + lite utveckling av Stokastisk variabel Diskreta och kontinuerliga sv Frekvensfunktion (diskr.), Täthetsfunktion (kont.) Fördelningsfunktion
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation
UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Statistiska metoder för säkerhetsanalys
F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt
KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03 Allmänt Kursen ger 9hp och omfattar 36 timmar föreläsning, 28 timmar
KURSPROGRAM HT-10 MATEMATISK STATISTIK AK FÖR CDI, FMS 012
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK KURSPROGRAM HT-10 MATEMATISK STATISTIK AK FÖR CDI, FMS 012 Hemsida Kursens hemsida finns på http://www.maths.lth.se/matstat/kurser/fms012/
1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter
Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden