Datorövning 1: Fördelningar
|
|
- Klara Samuelsson
- för 6 år sedan
- Visningar:
Transkript
1 Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och fördelningar genom numeriska exempel i Matlab. Du behöver en Matlab-installation som inkluderar Statistics Toolbox. De extra filer du behöver finns att ladda ner från kursens hemsida fms012/f 1 Förberedelseuppgifter 1. Läs igenom denna handledning. 2. Förvissa dig om att du förstår vad täthetsfunktion och fördelningsfunktion är och hur de förhåller sig till varandra. 3. Redovisas vid laborationens start! Skriv upp täthetsfunktionen för X N (μ, σ)-fördelad s.v. och skissa upp den. Ange väntevärde och standardavvikelse för X. 4. Redovisas vid laborationens start! Om X har en standardnormalfördelning, vad är då μ och σ? 2 Relativa frekvenser och fördelningar I denna del ska vi använda numeriska exempel i Matlab för att studera koncepten sannolikhet och fördelning. Målet är att du ska få en intuitiv känsla för sannolikhetsresonemang, snarare än att konfronteras med teori. Data-undersökning För att illustrera syftet använder vi artificiella data som är simulerade från en statistisk fördelning. Detta i motsats till verkliga data där det inte finns några etiketter som säger vilken fördelning det är. Trots att vi vet hur data genererades är det ändå användbart och man använder ofta simulerade data i skattningar och test i mer komplicerade situationer. För att skaffa dig ett slumpmässigt dataset med 50 värden, skriv >> data=randn(1,50) Uppgift: Vilken fördelning kommer ditt slumpmässiga stickprov från (använd help randn)? Vilka värden har parametrarna i den? Skriv ner täthetsfunktionen.
2 2 DATORÖVNING 1, FMS012/MASB03 VT-17 En god regel, när man står inför ett nytt datamaterial, är att rita upp det på några olika sätt. Vi börjar med att göra ett histogram: >> hist(data) Uppgift: Ser det ut som du väntade dig? Jämför med täthetsfunktionen. Använd nu kommandot >> figure(2) % Ritar i ett nytt fönster >> plot(data,'.') och relatera det till histogrammet. Uppgift: Jämför histogrammet med ploten. Hur syns egenskaperna hos data i histogrammet, och tvärtom? Ett annat sätt är att rita de sorterade data, med ordningsnumret på y-axeln: >> figure(3) >> plot(sort(data),1:length(data),'.') Uppgift: Jämför denna plot med figure(1) och figure(2). Hur hänger de ihop med varandra? Uppgift: Välj ut några datapunkter i figure(2) och försök hitta dem i de andra två figurerna. I figure(3) kan vi t.ex. avläsa hur många av observationerna som är mindre än eller lika med ett visst tal. Uppgift: Välj x = 1.1 och försök avgöra i figuren (det går att zooma) hur många av värdena som är mindre än eller lika med 1.1. När antalet observationer i stickprovet ökar kan vi tolka kvoten som sannolikheten att få ett värde mindre än eller lika med x. Kvoten kan beräknas så här: >> ratio = sum(data<=1.1) / length(data) Uppgift: Stämmer det med din uppskattning från figuren?
3 DATORÖVNING 1, FMS012/MASB03 VT-17 3 För att förstå hur data<=1.1 fungerar så jämför vi det med ursprungsdata: >> data >> data<=1.1 Vad är det som händer? Uppgift: Pröva med några andra värden på x. Hur borde andelen ändra sig när x ökar respektive minskar? Jämför med figuren. Den omvända proceduren, hitta det värde x som motsvarar en given sannolikhet, dvs en given kvantil, är ofta viktigare. Vi återkommer till det lite senare. Vi kan naturligtvis låta datorn välja ett stort antal värden att undersöka och sedan försöka få en överblick. Eftersom vi har ett ändligt antal observationer så blir antalet, eller andelen, observationer som än mindre än eller lika med ett visst x-värde en stegfunktion som vi kan rita upp: >> figure(4) >> stairs(sort(data),(1:length(data))/length(data),'-') >> grid on Figuren bör likna Figur 1 i handledningen och din egen figure(3), bortsett från y-skalan. Den visar hur värdena är fördelade och denna typ av figur kallas empirisk fördelningsfunktion (empirical distribution function 1. För ett värde på x-axeln, t.ex. 1.1, hittar vi, på y-axeln, andelen värden som är mindre än eller lika värdet på x-axeln. Uppgift: Kolla att andelen värden som är mindre än eller lika med 1.1 stämmer med det du fick fram tidigare. Större stickprov. Fördelningsfunktionen för en slumpvariabel Låt oss nu studera ett större datamaterial, t.ex observationer från samma fördelning som tidigare. Vi simulerar data och ritar dem i en ny figur: >> data=randn(1,2000); >> figure(5) >> hist(data) >> figure(6) >> stairs(sort(data),(1:length(data))/length(data),'.-') >> grid on Uppgift: Jämför histogrammet med det i figure(1). Hur förändrades det när du fick fler observationer? 1 Fördelningsfunktioner kallas ofta cumulative distribution functions.
4 4 DATORÖVNING 1, FMS012/MASB03 VT Figur 1: Empirisk fördelningsfunktion, ett exempel Uppgift: Jämför den empiriska fördelningsfunktionen med den i figure(4). Hur förändrades den? Uppgift: Vad blir nu andelen värden som är mindre än eller lika med 1.1? Med många observationer närmar sig resultatet fördelningsfunktionen, dvs, för en slumpvariabel X, funktionen F X (x) = P(X x). I vårt fall valdes X från en normalfördelning; vi hade X N(0, 1). Vi ritar in den teoretiska fördelningsfunktionen, normcdf, i samma figur som de två empiriska: >> x=linspace(-4,4,500); % 500 värden jämnt fördelade mellan -4 och 4 >> figure(4) >> hold on % Fortsätt rita fler saker i samma figur. >> plot(x,normcdf(x),'r') >> hold off % Sluta rita i samma figur. >> figure(6) >> hold on % Fortsätt rita fler saker i samma figur. >> plot(x,normcdf(x),'r') >> hold off % Sluta rita i samma figur. För alla fördelningsfunktioner F X, har vi att F X (x) 1 när x och att F X (x) 0 när x. Uppgift: Tolka figuren. Vad är det på x- och y-axlarna?
5 DATORÖVNING 1, FMS012/MASB03 VT-17 5 Uppgift: Jämför hur bra de empiriska fördelningsfunktionerna följer den teoretiska i de två figurerna. Vad hände när antalet observationer ökade? Uppgift: Läs av P(X 1.1) ur den teoretiska fördelningsfunktionen i figuren och jämför med dina tidigare skattningar. Jämför också med det exakta värdet som kan fås med normcdf(1.1). Kvantiler Begreppet kvantil är viktigt. Kvantilen kan definieras på olika sätt men vi (och många andra) använder följande definition: kvantilen är det tal x α som uppfyller P(X x α ) = 1 α (1) där α är ett tal mellan 0 och 1 (vanliga val är: 0.05, 0.01, 0.001). Uppgift: Läs av kvantilen x 0.05 där α = 0.05 ur dina figurer, med hjälp av definitionen (1). Både som skattningar i de två empiriska fördelningsfunktionerna och exakt i den teoretiska. Jämför med det exakta värdet, som kan fås med norminv(1-0.05). Uppgift: Experimentera med att ändra antalet observationer. Simulera nya slumptal, rita nya histogram och empiriska fördelningsfunktioner, samt skatta P(X 1.1) och x Uppgift: Använd ett mycket litet dataset, t.ex. 5 observationer och gör om simuleringarna och skattningarna några gånger. Verkar de tillförlitliga? Uppgift: Använd ett större dataset, t.ex. 100 observationer och gör om simuleringarna och skattningarna några gånger. Verkar de mer tillförlitliga nu? Hur datasetets storlek påverkar osäkerheten i uppskattningarna kommer vi tillbaka till under hela resten av kursen. Andra fördelningar Vi ska nu rita upp några normalfördelningar, N (μ, σ), och se hur de ändrar sig när vi ändrar på parametrarna μ och σ.
6 6 DATORÖVNING 1, FMS012/MASB03 VT-17 >> close all % stäng alla gamla figurer >> x = linspace(0,10,1000); % Genererar 1000 tal jämnt utspridda % mellan 0 och 10. >> figure(1) >> plot(x,normpdf(x,2,0.5)) % N(2, 0.5) >> hold on % Lås plotten, övriga ritas i samma bild. >> plot(x,normpdf(x,7,0.5),'r') % N(7, 0.5) i rött >> plot(x,normpdf(x,5,2),'g') % N(5, 2) i grönt >> plot(x,normpdf(x,5,0.2),'y') % N(5, 0.2) i gult >> hold off % Lås upp plotten >> xlabel('x') >> title('täthetsfunktioner, f(x)') >> figure(2) >> plot(x,normcdf(x,2,0.5)) >> hold on >> plot(x,normcdf(x,7,0.5),'r') >> plot(x,normcdf(x,5,2),'g') >> plot(x,normcdf(x,5,0.2),'y') >> hold off >> xlabel('x') >> title('fördelningsfunktioner, F(x)') Uppgift: Vad händer med fördelningen när μ ändras? Vad representerar μ i fördelningen? Uppgift: Vad händer med fördelningen när σ ändras? Vad respresenterar σ i fördelningen? Uppgift: Fördelningsfunktionen är ju integralen av täthetsfunktionen. Relatera dem till varandra i figuren. Hur ändrar sig, t.ex. fördelningsfunktionen när x ligger nära μ jämfört med när x ligger långt från μ? Hur ser täthetsfuktionen ut då (stor eller liten?) Uppgift: Experimentera med andra värden på μ och σ och se vad som händer. Du kan behöva ändra x för att för att få plats i figuren (tips: det allra mesta av en normalfördelning ryms inom μ ± 4σ). Jfr. Uppgift 6.7: Elförbrukningen (kwh) vid en kemisk tillverkningsprocess varierar från dag till dag som en s.v. X N (180, 5). Uppgift: Rita upp fördelningsfunktionen för X och avläs sannolikheten att elförbrukningen en viss dag är minst 170 kwh. Jämför med det exakta värdet 1-normcdf(170,180,5).
7 DATORÖVNING 1, FMS012/MASB03 VT-17 7 Uppgift: Utnyttja figuren för att bestämma P(170 X 195). Jämför med exakta värdet normcdf(195,180,5)-normcdf(170,180,5). Uppgift: Läs av 1 %-kvantilen för elförbrukningen i figuren. Jämför med det exakta värdet norminv(1-0.01,180,5).
Datorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Datorövning 1 Introduktion till Matlab Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först
träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska
repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2
Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Laboration 3: Parameterskattning och Fördelningsanpassning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet
Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
Föreläsning 3, Matematisk statistik Π + E
Repetition Kvantil Presentation Slumptal Transformer Inversmetoden Föreläsning 3, Matematisk statistik Π + E Sören Vang Andersen 13 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F3 1/19 Repetition
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Datorövning 3 Bootstrap och Bayesiansk analys
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på två olika
Lunds tekniska högskola Matematikcentrum Matematisk statistik
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 1, 2012-03-30 Syfte Syftet med dagens laboration är att du ska träna på att hantera olika
Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer
Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.
Datorövning 3 Bootstrap och Bayesiansk analys
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-17 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Målet för D2 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 2 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
Lunds tekniska högskola Matematikcentrum Matematisk statistik
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 1 Syfte Syftet med dagens laboration är att du ska träna på att hantera olika numeriska
Laboration 2: Sannolikhetsteori och simulering
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
1 Bakgrund DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF Något om Radon och Radonmätningar. 1.2 Statistisk modell
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för punkt- och intervallskattningar.
FÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för CDIfysiker, FMS012/MASB03, HT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
Laboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,
SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL
Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Föreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
Laboration 1: Beskrivande statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 1: Beskrivande statistik 1 Syfte Syftet med den här laborationen
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01
LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk
F9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
SF1910 Tillämpad statistik, HT 2016 Laboration 1 för CSAMHS, CLGYM-TEMI
Matematisk Statistik Introduktion SF1910 Tillämpad statistik, HT 2016 Laboration 1 för CSAMHS, CLGYM-TEMI Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 2018-09-19 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
Projekt 1: Om fördelningar och risker
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Projekt 1: Om fördelningar och risker 1 Syfte I den första delen av detta projekt skall vi försöka
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation
UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 0, HT-0! "$&%')(+*,-./01.02% 1 Syfte Syftet med den här laborationen är att du ska bli
I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall.
UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin Statistik för ingenjörer 1MS008 VT 2011 DATORÖVNING 2: SKATTNINGAR OCH KONFIDENSINTERVALL 1 Inledning I den här datorövningen ser vi hur R kan
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3
Matematisk Statistik SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3 1 Introduktion Denna demonstration är inte poänggivande, men utgör en förberedelse för den andra
Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR ED, FMS021, VT01 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Syftet med
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Thomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
1. Lära sig beräkna kon densintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera centrala gränsvärdessatsen
Datorövning 2 Statistikens Grunder 2 Syfte 1. Lära sig beräkna kon densintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera centrala gränsvärdessatsen Exempel Beräkna
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
Monte Carlo-metoder. Bild från Monte Carlo
Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på
Laboration 1: Mer om Matlab samt Deskriptiv statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboration 1: Mer om Matlab samt Deskriptiv statistik 1 Syfte Syftet med den
Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Föreläsning 4, Matematisk statistik för M
Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med
Föreläsningsanteckningar till kapitel 8, del 2
Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.
Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
LKT325/LMA521: Faktorförsök
Föreläsning 2 Innehåll Referensfördelning Referensintervall Skatta variansen 1 Flera mätningar i varje grupp. 2 Antag att vissa eekter inte existerar 3 Normalfördelningspapper Referensfördelning Hittills
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
DATORÖVNING 2: SIMULERING
UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin - thulin@math.uu.se Matematisk statistik Statistik för ingenjörer VT 2013 DATORÖVNING 2: SIMULERING Innehåll 1 Inledning 1 2 Inledande exempel
Datorövning 6 Extremvärden och Peak over Threshold
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 6 Extremvärden och Peak over Threshold I denna datorövning ska vi använda mätningarna
Beskrivande statistik
Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Datorövning 5 Tillförlitlighet hos system
Lund tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 1 Förberedelseuppgifter Datorövning 5 Tillförlitlighet hos system 1. Läs igenom handledningen
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Del 2 tillsammans med förberedelsefrågor - tid för inlämning och återlämning meddelas senare.
STOCKHOLMS UNIVERSITET Statistiska institutionen VT 2009 Tatjana Pavlenko och Bertil Wegmann OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, VT 2009 Den obligatoriska inlämningsuppgiften,
3 Jämförelse mellan Polyas urna och en vanlig urna
LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK 1 Förberedelser LABORATION 1: POLYAS URNMODELL MATEMATISK STATISTIK AK, MAS 101:A, VT-01 Laborationen, som presenterar en urnmodell introducerad
Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
PROGRAMFÖRKLARING III
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING III Matematisk statistik, Lunds universitet stik för modellval och prediktion p./22 Statistik