Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
|
|
- Karin Eva Falk
- för 8 år sedan
- Visningar:
Transkript
1 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar och hypotesprövning Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik Stora talens lag Centrala gränsvärdessatsen Punktskattningar Hypotesprövning 1 Förberedelseuppgifter Som förberedelse till laborationen bör du läsa igenom Kapitel 5, 6 och i kursboken samt hela laborationshandledningen. De data-filer och m-filer du behöver till denna laboration finns som vanligt på kursens hemsida. Till laborationens start har du med dig lösningar, som du kan redogöra för, till uppgifterna (a) (g): (a) Redogör för Stora talens lag. (b) Redogör för Centrala gränsvärdessatsen. (c) Låt X vara antal ögon vid ett tärningskast med p X (k) = 1/6 för k = 1,, 3, 4, 5, 6. Vilken fördelning har summan av n oberoende kast ungefär då n är stort? (d) Vi har observationer x 1, x,..., x n som är oberoende och exponentialfördelade med väntevärdet a. Härled ML- och MK-skattningarna av a. (e) Hur skattar man väntevärde och standardavvikelse med hjälp av stickprovet x 1,..., x n från en normalfördelning? (f) Vi har två stora, oberoende stickprov x 1,..., x n1 med E(X i ) = m 1 och V(X i ) = s samt y 1,..., y n med E(Y i ) = m och V(Y i ) = s där m 1, m och s är okända. Hur testar man H 0 : m 1 = m mot H 1 : m 1 < m på den approximativa signifikansnivån 5 %? Varför blir det inte en exakt signifikansnivå? (g) Vi har två stickprov x 1,..., x n med E(X i ) = m i +D och V(X i ) = s 1 samt y 1,..., y n med E(Y i ) = m i och V(Y i ) = s där m i, D, s 1 och s är okända. Vi vet också att X i Y i är normalfördelade. Hur testar man H 0 : D = 0 mot H 1 : D < 0 på signifikansnivån 5 %?
2 Stora talens lag Stora talens lag säger att om X n är medelvärdet av n likafördelade oberoende stokastiska variabler X 1,..., X n med ändlig varians, så gäller att P( X n m X > e ) 0 då n för varje e > 0, vilket också kan uttryckas som att X n m X i sannolikhet. Enklare uttryckt så kommer medelvärdet av n variabler att avvika allt mindre från väntevärdet då n växer. Ett sätt att illustrera detta är att kasta en tärning många gånger och se att de successiva medelvärdena konvergerar mot väntevärdet. Simulera först 100 tärningskast: >> help unidrnd >> X=unidrnd(6,100,1) Ett sätt att räkna ut de successiva medelvärdena är följande: >> Xbar=cumsum(X)./(1:100) Funktionen cumsum ger en vektor där element i är summan av de i första elementen i inparametern, i vårt fall X. Notationen./ betyder elementvis division och (1:100) är en kolonnvektor med talen 1 t.o.m Tänk ut att Xbar innehåller de successiva medelvärdena. Plotta dem. >> plot(1:100,xbar) Gör om alltihop med fler kast, t.ex st. Ser allt ut som du väntat dig? 3 Centrala gränsvärdessatsen Börja med att hitta på en diskret sannolikhetsfunktion med några möjliga utfall, t.ex. den likformiga fördelningen över 1 t.o.m. 6, dvs ett tärningskast. Mata sedan in denna sannolikhetsfunktion i form av en vektor. >> p=[ ]/6 Nollan finns där för att det blir lättare att hålla reda på saker och ting om det första elementet i vektorn är sannolikheten för att utfallet är noll. Välj gärna någon annan sannolikhetsfunktion än ovanstående förslag. Rita upp sannolikhetsfunktionen med kommandot bar. >> bar(0:length(p)-1,p) Funktionen length ger längden av en vektor. Som du vet beräknas sannolikhetsfunktionen för en summa av två oberoende diskreta stokastiska variabler genom en diskret faltning, se formel (4.14) i boken. I MATLAB finns en funktion, conv, som utför just en sådan faltning (faltning heter convolution på engelska). >> p=conv(p,p) >> p4=conv(p,p) >> p8=conv(p4,p4) Här blir p8 alltså sannolikhetsfunktionen för en summa av åtta stycken oberoende stokastiska variabler med sannolikhetsfunktionen p. Rita upp dessa nya sannolikhetsfunktioner. När börjar det likna en normalfördelning? Räkna nu ut väntevärde och standardavvikelse för en stokastisk variabel med sannolikhetsfunktionen p.
3 >> m=sum((0:6).*p) >> sigma=sqrt(sum(((0:6)-m).^.*p)) Funktionen sum ger summan av elementen i en vektor, notationen.^ betyder elementvis kvadrering av en vektor och sqrt är kvadratroten. Vi kan nu jämföra sannolikhetsfunktionen p4 med den approximativa normalfördelning N ( ) nm, s n (där n = 4) som vi får ur Centrala gränsvärdessatsen. >> bar(0:length(p4)-1,p4) >> hold on >> xx=0:0.5:30; >> plot(xx,normpdf(xx,4*m,sqrt(4)*sigma)) >> hold off Kommandot hold on gör att det man ritat inte tas bort vid nästa plottning. Approximeras p4 väl av normalfördelningen? Pröva också vad som händer om p är en mycket sned fördelning, t.ex. >> p=[ ]/15 Hur många komponenter behövs det nu i summan för att fördelningen väl ska kunna approximeras med en normalfördelning? 4 Punktskattningar 4.1 ML- och MK-skattning Vi skall i den här uppgiften titta lite närmare på två av de vanligaste skattningsmetoderna i statistiken, nämligen ML- och MK-skattning. Vi skall bl.a. se att ML-skattning är ett maximeringsproblem medan MK-skattning kan ses som ett minimeringsproblem. I filen matdata.dat (som finns på kursens hemsida) har vi 150 mätningar av livslängden (enhet: timmar) av en viss komponent i en bil. Livslängden hos varje komponent antages vara oberoende av alla andra komponenter. Ladda in data och gör en första undersökning av livslängderna. >> load matdata.dat >> plot(matdata, * ) >> hist(matdata) Vi är intresserade av att skatta medellivslängden för komponenten. En variant att göra detta på är att göra en ML-skattning av a. För att kunna göra en ML-skattning måste vi ha en uppfattning om vilken fördelning data har. Från liknande experiment som gjorts tidigare har det visat sig att livslängden hos en viss komponent är approximativt exponentialfördelad. Alltså, vi antar att livslängden är exponentialfördelad med väntevärde a och ställer upp log-likelihoodfunktionen. Hur ser den ut? Svar: l(a) = ln L(a) =... Det finns (på kursens hemsida) en specialskriven m-fil, ML_exp, som beräknar l(a). Studera m-filens MAT- LAB-kommandon och förvissa dig om att den verkligen ger rätt funktion! (type ML_exp) Rita upp l(a), då 30 a 150. Hur ser funktionen ut och vilket värde på a motsvarar ML-skattningen? (Du kan använda kommandot zoom för att förstora delar av figuren.) >> a=[30:.5:150]; >> l=ml_exp(a,matdata); >> plot(a,l) 3
4 Nu går vi över och tittar på hur en MK-skattning av medellivslängden ser ut. Fördelen med MK jämfört med ML är att fördelningen för data ej behöver vara känd. Börja nu med att ställa upp förlustfunktionen, Q(a). Svar: Q(a) =... Programmet MK_exp (som du hittar på hemsidan) är specialskrivet för att beräkna Q(a). Titta på MATLABkommandona för att kolla att det stämmer! Rita ut Q(a). Vilket värde på a motsvarar MK-skattningen? >> Q=MK_exp(a,matdata); >> plot(a,q) Både ML- och MK-skattningen av a är enkel att beräkna, se förberedelseuppgift (d). Beräkna a ML och a MK och jämför med dina figurer. Här blev ML- och MK-skattningarna lika, det är inte alltid fallet. 4. Skattningen a är en stokastisk variabel! Om vi skulle ta 150 nya mätningar av livslängden hos ovanstående komponenter (dvs ett nytt stickprov) så skulle skattningen av medelvärdet med säkerhet bli annorlunda, dvs skattningen kan ses som en stokastisk variabel. För att illustrera detta tänker vi oss att vi tar 1000 stickprov med 150 mätningar i varje stickprov. Eftersom vi inte har 1000 riktiga stickprov så får vi nöja oss med att simulera data. Genom att utnyttja funktionen exprnd kan vi enkelt generera exponentialfördelade slumptal. Vi antar att det sanna medelvärdet är 100, dvs a = 100 >> help exprnd >> a=100; >> x=exprnd(a,150,1000); Kolonn nummer i i matrisen x motsvarar stickprov i. Nu skall vi skatta a för varje stickprov. Det kan göras enkelt enligt >> a_est=mean(x); Element i i vektorn a_est innehåller skattningen av medelvärdet för stickprov i. Plotta a_est! Hur ser det ut? Vilken ungefärlig fördelning har skattningen av medelvärdet? Använd dig av kommandona hist och normplot och dina nyförvärvade kunskaper om Stora talens lag och Centrala gränsvärdessatsen för att ta reda på detta. 4
5 5 Mottagarkänslighet Under laboration och datamaterialet sensitivity.mat studerade vi mottagarkänslighet för 76 telefoner för en radiokanal kring MHz (mitt på GSMs mottagarfrekvensband), kolonn, och för en radiokanal kring 935 (en kanal längst ner på frekvensbandet), kolonn 1. Under laboration 1 studerade vi histogrammen nedan och ställde frågan om det var någon skillnad mellan väntevärdena. >> load sensitivity >> slc=sensitivity(:,1); >> smc=sensitivity(:,); >> x=-109:0.3:-104; >> subplot(,1,1) >> hist(slc,x) >> axis([ ]) >> subplot(,1,) >> hist(smc,x) >> axis([ ]) I histogrammen ser man en tydlig skillnad men är den signifikant? 5.1 Test av skillnad mellan väntevärden Uppgift 1: Beräkna medelvärde och standardavvikelse för de två kolonnerna, anta att standardavvikelserna är lika, samt testa på nivån a om det finns någon skillnad mellan väntevärdena m smc och m slc ; se förberedelseuppgift (f). Svar: H 0 : m smc = m slc, H 1 : m smc < m slc. Om du vill får du gärna konstruera motsvarande ensidiga konfidensintervall i stället och på så sätt avgöra om data styrker vår uppfattning om att känsligheten är sämre för kanaler nära frekvensbandets ändpunkter. 5. Stickprov i par I själva verket hör mätningarna ihop parvis. Den första mätningen av SMC och SLC är gjord på samma telefon och är knappast oberoende; en dålig telefon är antagligen dålig över hela frekvensbandet. Plotta SMC mot SLC för att se att så är fallet. De s -skattningar vi gjorde ovan innefattar alltså även variationen mellan telefoner och ger en kraftig överskattning av variationen i skillnad mellan de två frekvensbanden för en enskild telefon. Uppgift : Beräkna de parvisa skillnaderna mellan SMC och SLC och gör ett histogram. Skatta väntevärdet (D = m smc m slc ) och standardavvikelsen för skillnaderna och testa H 0 : D = 0, H 1 : D < 0. Hur blir det nu med signifikansen? Svar: 5
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merLaboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merLaboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Läs mer1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation
LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen
Läs merLaboration 4: Intervallskattning och hypotesprövning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR I, FMS012, HT08 Laboration 4: Intervallskattning och hypotesprövning Syftet med den här laborationen
Läs merLaboration 3: Enkla punktskattningar, styrkefunktion och bootstrap
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,
Läs merLaboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
Läs merLaboration 5: Intervallskattning och hypotesprövning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-01 Laboration 5: Intervallskattning och hypotesprövning Syftet med den här laborationen
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR I, FMS 12, HT-8 Laboration 3: Sannolikhetsteori och simulering Syftet med den här laborationen
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/200, HT-03 Laboration 5: Intervallskattning och hypotesprövning Syftet med den här
Läs merProjekt 1: Om fördelningar och risker
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Projekt 1: Om fördelningar och risker 1 Syfte I den första delen av detta projekt skall vi försöka
Läs mer1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation
UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av
Läs merLaboration 4: Intervallskattning och. Hypotesprövning. 1 Förberedelseuppgifter LABORATION 4 MATEMATISK STATISTIK AK FÖR ED, FMS022, VT02
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR ED, FMS022, VT02 Laboration 4: Intervallskattning och hypotesprövning Syftet med den här laborationen
Läs merSF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Läs merLaboration 4: Intervallskattning och hypotesprövning
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 4 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT14 Laboration 4: Intervallskattning och hypotesprövning Syftet med den
Läs merrepetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
Läs merbli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Läs merLaboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
Läs merLaboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Läs merDATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Läs merLaboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för CDIfysiker, FMS012/MASB03, HT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Läs merLaboration 4: Intervallskattning och hypotesprövning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 Laboration 4: Intervallskattning och hypotesprövning Syftet med den här laborationen
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,
Läs merLaboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR ED, FMS021, VT01 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Syftet med
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:
Läs merLaboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT17 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och
Läs merLaboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Läs merLaboration 3: Parameterskattning och Fördelningsanpassning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet
Läs merSF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2
Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera
Läs merBIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du
Läs merLaboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Läs merResultatet läggs in i ladok senast 13 juni 2014.
Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar
Läs merk x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merDatorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
Läs merLaboration 1: Beskrivande statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 1: Beskrivande statistik 1 Syfte Syftet med den här laborationen
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli
Läs merLaboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Läs merDatorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
Läs merMatematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer
Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.
Läs merDatorlaboration 2 Konfidensintervall & hypotesprövning
Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund
Läs merMatematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2
Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.
Läs merStatistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera
Läs merMatematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Läs merDemonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Läs merLaboration 1: Mer om Matlab samt Deskriptiv statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboration 1: Mer om Matlab samt Deskriptiv statistik 1 Syfte Syftet med den
Läs mer1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 0, HT-0! "$&%')(+*,-./01.02% 1 Syfte Syftet med den här laborationen är att du ska bli
Läs merlära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de
Läs merF14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15
1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla
Läs merMMA132: Laboration 1 Introduktion till MATLAB
MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer
Läs merTentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''
Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Hjälpmedel:'Valfri'räknare,'egenhändigt'handskriven'formelsamling'(4''A4Esidor'på'2'blad)' och'till'skrivningen'medhörande'tabeller.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Läs merInlämningsuppgift 4 NUM131
Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter
Läs merDatorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Läs merDatorövning 3 Bootstrap och Bayesiansk analys
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på två olika
Läs merMiniprojektuppgift i TSRT04: Femtal i Yatzy
Miniprojektuppgift i TSRT04: Femtal i Yatzy 22 augusti 2016 1 Uppgift I tärningsspelet Yatzy används fem vanliga sexsidiga tärningar. Deltagarna slår tärningarna i tur och ordning och försöker få vissa
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart
Läs merLaboration 4: Intervallskattning och hypotesprövning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 4: Intervallskattning och hypotesprövning Syftet med den
Läs merLaboration 4: Hypotesprövning och styrkefunktion
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration
Läs merSF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL
Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.
Läs mer1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01
LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk
Läs merDatorövning 2 Diskret fördelning och betingning
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 2 Diskret fördelning och betingning Syftet med den här laborationen
Läs merLaboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys
Läs merDatorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Läs merDatorövning 3 Bootstrap och Bayesiansk analys
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-17 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Läs merträna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Läs merProcessidentifiering och Polplacerad Reglering
UmU/TFE Laboration Processidentifiering och Polplacerad Reglering Introduktion Referenser till teoriavsnitt följer här. Processidentifiering: Kursbok kap 17.3-17.4. Jämför med det sista exemplet i kap
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Läs merTentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15
Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:
Läs merIndex. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
Läs merLinjär algebra med tillämpningar, lab 1
Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt
Läs merSummor av slumpvariabler
1/22 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 8/2 2013 2/22 Dagens föreläsning Väntevärde och varians Vanliga kontinuerliga fördelningar Parkeringsplatsproblemet
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.
Läs mer1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Läs merLektionsanteckningar 2: Matematikrepetition, tabeller och diagram
Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1
Läs merInstruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
Läs merTSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
Läs merLunds tekniska högskola Matematikcentrum Matematisk statistik
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 1 Syfte Syftet med dagens laboration är att du ska träna på att hantera olika numeriska
Läs merDatorövning 1 Introduktion till Matlab Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först
Läs merLaboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
Läs mer1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter
Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden
Läs merEnkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler
UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,
Läs merDatorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 0803/ Thomas Munther Datorövning Matlab/Simulink i Styr- och Reglerteknik för U3/EI Laborationen förutsätter en del förberedelser
Läs mer(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant?
LÖSNINGAR till tentamen: Statistik och sannolikhetslära (LMA12) Tid och plats: 8.3-12.3 den 24 augusti 215 Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 12 poäng, 4: 18 poäng, 5: 24
Läs merLektion 1: Fördelningar och deskriptiv analys
Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över
Läs merBeräkningsverktyg HT07
Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion
Läs merSF1901 Sannolikhetsteori och statistik, VT 2017 Datorlaboration 1 för CELTE2, CTFYS2
Matematisk Statistik SF1901 Sannolikhetsteori och statistik, VT 2017 Datorlaboration 1 för CELTE2, CTFYS2 1 Introduktion Detta är handledningen till Datorlaboration 1, ta med en utskriven kopia av den
Läs merMer om funktioner och grafik i Matlab
CTH/GU 2017/2018 Matematiska vetenskaper Mer om funktioner och grafik i Matlab 1 Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och
Läs merFunktioner och grafritning i Matlab
CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.
Läs mera) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?
Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten
Läs merTextsträngar från/till skärm eller fil
Textsträngar från/till skärm eller fil Textsträngar [Kapitel 8.1] In- och utmatning till skärm [Kapitel 8.2] Rekursion Gränssnitt Felhantering In- och utmatning till fil Histogram 2010-10-25 Datorlära,
Läs merLunds tekniska högskola Matematikcentrum Matematisk statistik
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 1, 2012-03-30 Syfte Syftet med dagens laboration är att du ska träna på att hantera olika
Läs mer0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merFöreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
Läs merSF1901 Sannolikhetsteori och statistik: VT 2016 Lab 2 för CTFYS, CELTE
Matematisk Statistik SF1901 Sannolikhetsteori och statistik: VT 2016 Lab 2 för CTFYS, CELTE Introduktion Detta är handledningen till Laboration 2, ta med en utskriven kopia av den till laborationen. Försäkra
Läs mer