Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08
|
|
- Per Fransson
- för 9 år sedan
- Visningar:
Transkript
1 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen Enkel linjär regression Multipel linjär regression 1 Förberedelseuppgifter Som förberedelse till laborationen bör du repetera normalfördelningsdiagram, läsa igenom hela regressionsstencilen och hela laborationshandledningen. Till laborationens start har du med dig lösningar till förberedelseuppgifterna. 1. Ange modellen för enkel linjär regression med normalfördelade fel. Hur skattar man, och 2? Vilken fördelning får och? Hur gör man konfidensintervall för, ochñ0 = + x 0? Hur kan man testa huruvida linjens lutning är 0? 2. Vad är ett prediktionsintervall och hur räknas det ut? 3. Vad är ett kalibreringsintervall och hur kan det konstrueras? 4. Residualanalys är ett centralt moment i all regressionsanalys. Hur bör residualerna se ut vid en korrekt regressionsanalys? Ange några tekniker för att kontrollera detta. 5. Ange modellen för multipel linjär regression på matrisform. Hur ser normalekvationerna ut och hur löser man dessa? Vad blir kovariansmatrisen för? 6. Lös uppgift ST35. 2 Enkel linjär regression Vid enkel linjär regression söker man anpassa en rät linje till datamaterialet, dvs modellen är y i = + x i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Vi kommer i den följande framställningen att arbeta med matrisformuleringen av modellen, Y = X +, där de ingående matriserna har följande form: y 1 1 x 1 y 2 Y =., X = 1 x 2 ( ).., 2 = och = 1.. y n 1 x n n Vi skall använda MATLAB-funktionenÖ Ö som skattar parametrar, beräknar konfidensintervall för dem, beräknar residualer och litet till. Gör ÐÔÖ Ö för att se vad funktionen gör. Uppgift: AnvändÖ Ö för att räkna uppgift ST35. En n 1-kolumn med ettor fås med ÓÒ Ò ½µoch två kolumner ½och ¾läggs bredvid varandra med ½ ¾.
2 2 Laboration 5, Matstat AK för CDE, VT Fallgropar För att illustrera vådan av att okritiskt anpassa en linjär modell till ett givet datamaterial har F. J. Anscombe konstruerat ett datamaterial, som ser ut på följande sätt: observation x 1, x 2, x 3 y 1 y 2 y 3 x 4 y Ù ÔÐÓØ ¾¾½µ ÔÐÓØ ܽ ݽ ³ ³µ Datamaterialet finns lagrat i filen Ò ÓÑ ºÑ Øoch kan laddas in i MATLAB med kommandot ÐÓ Ò ÓÑ. Med kommandotû Ófår du reda på aktuella variabler i minnet. En lämplig början är alltid att ta sig en titt på datamaterialet. Börja med att plottaý½motü½, dvs Plotta sedan y 2 mot x 2, y 3 mot x 3, samt y 4 mot x 4 (mha kommandot Ù ÔÐÓØkan du få varje plot för sig i ett och samma fönster det ger en bra överblick). Vi skall nu helt aningslöst till var och en av datamängderna anpassa en linjär modell enligt ½ ÓÒ Þ Ü½µµÜ½ y i = + x i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Vi börjar med att konstruera matrisen X (enligt notationen i det inledande avsnittet ovan) för den Ø ½ Ø ½ ݽ första datamängden på följande sätt: Med MATLABs inbyggda minsta-kvadrat-lösare kan vi snabbt och enkelt få fram vår skattning av som ݽ Ø ½ Ø ½ Ø Ù ÔÐÓØ ¾¾½µ Denna ÓÐ vänsterdivision med matrisen ½innebär att MATLAB beräknar vänsterinversen till ½, och om ÔÐÓØ ܽ ݽ ص systemet är överbestämt bestämmer MATLAB automatiskt minsta-kvadrat-lösningen. Nu kan vi bestämma den skattade regressionslinjen och sedan rita in denna ovanpå punktdiagrammet över det första datamaterialet. Är det rimligt att teckna sambandet mellan den förklarande variabelnü½och den beroende variabeln ݽsom ett linjärt samband? För att studera hur väl vår modell stämmer med givna data beräknar vi först vektorn av residualer. Om modellen är korrekt skall residualerna ungefärligen (vi använder skattade parametrar) vara observationer av likafördelade stokastiska variabler. För att undersöka hur det förhåller sig med detta utför vi en residualanalys enligt beskrivningen i kurslitteraturen. Vi kan t ex plotta residualerna gentemot den förklarande variabeln.
3 ÙÖ Ù ÔÐÓØ ¾¾½µ Ö ½ ݽ¹Ý½ Ø ÔÐÓØ ܽ Ö ½ ³ ³µ Laboration 5, Matstat AK för CDE, VT08 3 Ò ÓÑ Om vårt modellantagande är korrekt skall vi inte kunna skönja någon systematisk variation i diagrammet. Kan du finna något beroende? Nu vill vi göra motsvarande för de övriga tre datamaterialen, dvs lösa ekvationssystemen, skatta regressionslinjerna och rita ut residualerna. För att du ska slippa göra alla dessa kommandon finns de sammanställda i MATLAB-filen Ò ÓÑ ºÑ. Skriv alltså för att få skattningar och plottar och besvara sedan följande frågor: Uppgift: Jämför värdena på de skattade koefficienterna för var och en av fyra regressionslinjerna. Studera och jämför residualplottarna för de fyra olika fallen. Vad har denna lilla studie att förtälja den som helt slentrianmässigt och okritiskt vill använda en linjär regressionsmodell? 3 Ù ÔÐÓØ Polynomregression ÔÐÓØ Ó¾µ i filenó¾º Ø, och den kan laddas in i MATLAB med kommandotðó Ó¾º Ø. Datamaterialet som du skall arbeta med i detta avsnitt är koldioxidhalter uppmätta över en vulkan varje månad under en period av 32 år, dvs totalt finns = 384 mätvärden. Materialet finns Mätvärdena hamnar då i en vektor med namnetó¾. Plotta mätvärdena. Det Þ Þ ÖÓ ½¾ ¾µ finns uppenbarligen en kraftig periodicitet (årsvariation) i mätningarna, och en sådan låter sig inte så lätt fångas med en polynomiell regressionsfunktion. Detta problem kan lösas på flera sätt. Ett är att införa en sinus-funktion som modellerar variationen, ett annat är att differentiera datasekvensen, dvs undersöka z i = y i y i 1 i stället för y-värdena själva. Vi skall dock välja den mycket Þ µ Ó¾ enkla lösningen att medelvärdesbilda över varje år. Detta fordrar litet trixande i MATLAB. Först ÔÐÓØ Þµ skapar vi en matris med bara nollor. Sedan överför vi mätvärdena till denna matris. Ý Ñ Ò Þµ Värdena ió¾överförs här kolonnvis, så att första kolonnen iþinnehåller mätvärdena från första året osv. Kontrollera gärna detta. Vi kan nu använda funktionenñ Òför att beräkna årsmedelvärdena.
4 Ý Ý³ 4 Laboration 5, Matstat AK för CDE, VT08 Slutligen vill vi att mätvärdena skall finnas i en kolonnvektor för att regressionsberäkningarna skall se ut som vanligt. Ü ½ ¾µ³ Kom ihåg att³betecknar transponat. Vi har nu skapat den mätvärdesvektor vi skall arbeta med. Vi skapar även en vektor med den förklarande variabeln (årtalet, räknat från lämplig nollpunkt). ÔÐÓØ Ü Ý ³Ó³µ (Utrycket skapar en radvektor med värden från till isteg om.) Plotta mätvärdena. Uppenbarligen är den periodiska variationen borta, vilket också var syftet med medelvärdesbildningen. Vi skall nu göra polynomregression på materialet, dvs vår modell är y i = 0 + 1x i + 2x 2 i kx k i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Som modellen är skriven ovan är den olinjär, ty ett polynom är inte en linjär funktion, men vi kan göra den linjär genom att införa de nya förklarande variablerna x ij = x j i för j = 1,..., k, i = 1,..., n, och skriva y i = 0 + 1x i1 + 2x i kx ik + i, i = 1,..., n. Detta är den modell vi skall arbeta med. ÐÔÖ Ö ½ ÓÒ Þ ÜµµÜ 3.1 Enkel linjär regression Ø ½ Ø ½ ÒØ Ö ½ Ö ½ ÒØ Ø Ø Ö Ö Ý ½ ¼º¼ µ Vi ÔÐÓØ Ü Ý ³Ó³ Ü ½ Ø ½µ börjar med att anpassa en linjär funktion till datamaterialet, dvs polynomets ordningsgrad k = 1. Skattningarna ÔÐÓØ Ö ½ ³ ³µ av 0 och 1 erhålles med hjälp av funktionenö Ö. Uppgift: Verkar en rät linje vara en tillfredsställande regressionsmodell? Diagrammet visar att residualerna i mitten av mätserien tycks komma från en annan fördelning är residualerna i början och slutet av densamma. Alternativt finns en stark korrelation mellan störningarna vilket strider mot oberoendeantagandet. Vi drar alltså slutsatsen att en enkel linjär regressionsmodell inte passar det aktuella datamaterialet.
5 Laboration 5, Matstat AK för CDE, VT08 5 ܽ Ü 3.2 ܾ ܺ ¾ Kvadratisk regression Nästa steg är att försöka anpassa en kvadratisk funktion till mätvärdena, dvs vi använder ordningstalet ¾ ÓÒ Þ ÜµµÜ½Ü¾ k = 2 för regressionspolynomet. Först skapar vi vektorer som innehåller de förklarande variablerna x i1 = x i och x i2 = xi 2. Ø ¾ Ø ¾ ÒØ Ö ¾ Ö ¾ ÒØ Ø Ø Ö Ö Ý ¾ ¼º¼ µ ÔÐÓØ Ü Ý ³Ó³ Ü ¾ Ø ¾µ Sedan ÔÐÓØ Ö ¾ ³ ³µ samlar vi de förklarande variablerna i matrisen ¾. Vi kan nu beräkna skattningarna av 0, 1 och 2. Uppgift: Verkar den kvadratiska modellen vara bättre än den linjära? Kan residualerna tänkas komma från samma fördelning? ÒÓÖÑÔÐÓØ Ö ¾µ Vi skall nu undersöka om residualerna eventuellt kan komma från en normalfördelning. Detta kan vi göra genom att plotta dem i ett normalfördelningsdiagram. Uppgift: Verkar det rimligt att anta normalfördelade störningar? Är väntevärdet av dessa lika med 0? Undersök detta både genom att titta på normalfördelningsdiagrammet och genom att använda funktionenñ Ò. ¾ ÙÑ Ö ¾º ¾µ»¾ Skatta felens varians 2 genom att dela residualkvadratsumman med n 3 = 29. Avsluta med att studera de 95 %-iga konfidensintervallen för 0, 1 och 2 (finns i Ø ¾ ÒØ). Uppgift: Är 2 signifikant skild från 0, dvs om H 0 : 2 = 0 och H 1 : 2 0, kan vi då förkasta H 0 (på nivån 5 %)? I så fall kan vi med gott samvete anta den kvadratiska modellen före den linjära. På samma sätt kan man gå vidare och testa om en tredjegradsterm i regressionsfunktionen är relevant. Vi skall nu använda en färdigskriven funktionö Ù och låta den göra grovjobbet. Undersök med ÐÔ-kommandot vad funktionenö Ù gör och vad den har för inparametrar.
6 ÐÔÖ Ù Ö Ù Ü Ýµ 6 Laboration 5, Matstat AK för CDE, VT08 Undersök de olika möjligheternaö Ù ger dig att studera en regressionsmodell och välj olika gradtal i modellen. Uppgift: Fick du några varningsmeddelanden i kommandofönstret? Vad kan det i så fall bero på? Uppgift: Gör en bedömning av figurerna och utskriften med de skattade parametrarna och konfidensintervallen och avgör vilken polynommodell som är mest adekvat. 4 Multipel regression I och med att vi redan vid enkel linjär regression arbetat med matrismodeller, erbjuder multipel linjär regression inget nytt vad beträffar parameterskattningarna. Vi får utöka matrisen X med ytterligare en kolonn för varje ny förklarande variabel, men minsta-kvadrat-problemet löser vi på samma sätt som tidigare. 4.1 Cementdata I detta smått klassiska experiment (beskrevs i Industrial And Engineering Chemistry redan 1932) har man i 13 försök mätt värmeutvecklingen i stelnande cement som funktion av viktprocenten av några ingående ämnen. I filen Ñ ÒØfinns följande variabler kolonnvis: cem1 viktprocent av 3CaO Al 2 O 3 cem2 viktprocent av 3CaO SiO 2 cem3 viktprocent av 4CaO Al 2 O 3 Fe 2 O ÐÓ Ñ ÒØº Ø 3 cem4 viktprocent av 2CaO SiO Ñ ÒØ 2 värme utvecklad värme i kalorier per gram cement ÓÖÖÓ Ñ ÒØµ Vissa av de fyra cementvariablerna samvarierar kraftigt med varandra vilket påverkar regressionsanalysen. Utnyttja gärnaóööó, som räknar ut korrelationsmatrisen. Plotta de olika cementva- Ü Ñ ÒØ ½ µ Ñ ÒØ µ riablerna mot värme och även de olika cementvariablerna mot varandra. ÐÔÔÐÓØÑ ØÖ Ü ÔÐÓØÑ ØÖ Ü Ñ ÒØµ Uppgift: Vilka variabler verkar samvariera?
7 Laboration 5, Matstat AK för CDE, VT08 7 ÓÒ ½ ½µÜ Ø Ø Ö ¹ Ø Ø ¾ ÙÑ Ö º ¾µ» Börja Î Ø Ø ¾ ÒÚ ³ µ med att bestämma en full regressionsmodell med värme som responsvariabel och samtliga fyra cementvariabler ÔÐÓØ Ö ³Ó³µ som förklarande variabler: Uppgift: Vilka regressionskoefficienter är signifikant skilda från noll? Ser det bra ut? (t-kvantiler kan fås medø ÒÚ ½¹¼º¼»¾ µsom ger t 0.05/2 (f )-värdet) Ø Ø Ø Ø ÒØ Ö Ö ÒØ Ø Ø Ö Ö ¼º¼ µ Givetvis kunde vi också använt funktionenö Ö direkt ÐÔ Ø ÔÛ Ø ÔÛ µ Förmodligen är du inte alls nöjd med den fulla regressionsmodellen du just bestämt för cementdata, t ex samvarierade några av de förklarande variablerna kraftigt och kanske skall inte alla vara med. Försök komma fram till en bra regressionsmodell, vilket ju inte är helt lätt... Funktionen Ø ÔÛ kan vara till stor hjälp vid modellvalet Uppgift: Vilken modell kom du fram till? 5 Kalibrering av flödesmätare (om du hinner) Bakgrund Kalibrering av en flödesmätare genomförs oftast i en speciell kalibreringsrigg. Här finns en referensmätare eller referensmetod för att mäta flödet. För att erhålla en god bild av hur den testade flödesmätaren fungerar utförs kalibreringen vid ett stort antal flöden. Tyvärr kan man även vid kalibrering råka ut för situationer där den testade mätaren störs av testförhållandena. Om t.ex. pulsationer uppträder i flödet kommer detta att negativt påverka resultaten för den testade mätaren. Detta visar sig oftast vid låga flödeshastigheter, då ultraljudsmätare tenderar att överskatta flödeshastigheten. Detta orsakas av att vi erhåller en laminär flödesprofil i röret, vilket medför att en ultraljudsmätare kan överskatta flödet med upp till 33% vid fullt utbildad laminär strömning.
8 8 Laboration 5, Matstat AK för CDE, VT08 Vid låga flöden ser vi även att vi har stora fluktuationer i resultaten. Detta beror troligen på att vi har flödespulsationer i flödesriggen vilka kommer att orsaka fluktuerande resultat för ultraljudsflödesmätaren, bland annat orsakat av s.k. aliasproblem (d.v.s mätsystemet arbetar med en för låg sampelfrekvens i förhållande till frekvenserna hos det uppmätta). Vid höga flöden uppträder troligen kavitation (ett slags bubbelbildning) inne i ultraljudsflödesmätaren vilket kan förklara de positiva felen och den ökade spridningen för strömningshastigheter över 6.3 m/s. Metod Vi har nu tillgång till data från en kalibrering av en ultraljudsflödesmätare. Datamaterialet, som kommer från institutionen för värme- och kraftteknik, omfattar 71 mätningar och är lagrat i matrisen ÐÓÛ, där varje rad innehåller data från en mätning, variabeln ܾavser referensflödesmätningar från kalibreringsriggen och ݾavser respektive flöden uppmätta med den testade ultraljudsflödesmätaren (flödeshastigheterna givna i enheten m/s). Den använda kalibreringsriggen använder kontinuerlig vägning av det genomströmmande vattnet för att bestämma ett massflöde som sedan kan räknas om till medelhastighet i röret, vilket är vad ultraljudsmätaren mäter. Tanken är här att vi med hjälp av de gjorda mätningarna med givare och referens skall skatta parametrarna i en enkel linjär regressionsmodell. Vi antar då att referensmätningarnas fel kan försummas i jämförelse med ultraljudsgivarens (varför måste vi bekymra oss om detta?) och att ultraljudsgivarens fel är oberoende, likafördelade och har väntevärdet noll. ÐÓ ÐÓÛºÑ Ø För att studera detta datamaterial ska vi använda funktionenö Ù vars finesser du förhoppningsvis redan bekantat dig med. Observera att du t.ex. automatiskt kan rita ut konfidensintervall och Ö Ù Ü½ ݽµ prediktionsintervall genom att markera i tillämplig ruta. För att bilden skall bli tydligare börjar vi med att studera en liten delmängd av materialet, 10 talpar av flödesmätningar som ges i variablerna ܽoch ݽ. Använd nu funktionen interaktivt för att göra följande beräkningar: Beräkna det förväntade värdet enligt ultraljudsmätaren, då flödet enligt kalibreringsriggen är 0.40m/s. Beräkna också ett 95%-igt konfidensintervall för detta förväntade värde. Beräkna dessutom ett 95%-igt prediktionsintervall för en framtida observation från ultraljudsmätaren, då kalibreringsriggen ger mätvärdet 0.40m/s. Identifiera dessa två intervall i figuren och förklara vad det är som skiljer dem åt. Notera också värdena på de två intervallen eftersom du ska använda dem senare i laborationen. När vi sedan skall använda den kalibrerade ultraljudsmätaren, innebär det i princip att vi läser baklänges i kalibreringskurvan. Antag att vi med ultraljudsmätaren får mätvärdet 0.48m/s. Beräkna ett 95%-igt konfidensintervall för den sanna flödeshastigheten (dvs det värde som kalibreringsriggen skulle ge). Identifiera i figuren de kurvor som används vid den grafiska bestämningen av detta konfidensintervall och förklara varför det är just dem, man skall använda.
9 Laboration 5, Matstat AK för CDE, VT08 9 När vi enligt det ovanstående beräknat olika konfidens- och prediktionsintervall har vi stillatigande förutsatt att mätfelen hos ultraljudsmätaren är normalfördelade med konstant varians. Var i beräkningarna utnyttjas detta antagande? Om vi vill använda kalibreringskurvan i seriösa sammanhang måste vi först utföra en modellvalidering, dvs vi måste kontrollera att den linjära regressionsmodellen ger en adekvat beskrivning av sambandet. Vi kan bland annat validera modellen genom en grafisk residualanalys. Vid en sådan residualanalys får följande tre diagram, som alla kan fås iö Ù, anses vara standard: Residualer gentemot observerade eller predikterade y-värden. Ö Ù Ü¾ ݾµ Residualer gentemot den oberoende variabelns värden. Residualer i normalfördelningsdiagram. Detta skall vi nu ta itu med, men låt oss göra detta med en modell anpassad till hela datamaterialet. Då kan vi också passa på att studera vissa andra egenskaper hos de olika intervallskattningarna. Upprepa nu beräkningarna från första frågepunkten ovan, dvs Beräkna det förväntade värdet enligt ultraljudsmätaren, då flödet enligt kalibreringsriggen är 0.40m/s. Beräkna också ett 95%-igt konfidensintervall för detta förväntade värde. Beräkna dessutom ett 95%-igt prediktionsintervall för en framtida observation från ultraljudsmätaren, då kalibreringsriggen ger mätvärdet 0.40m/s. Skriv ner de båda intervallen. Jämför intervallbredderna baserade på de 10 mätningarna med motsvarande intervallbredder för den modell som är anpassad till alla de 71 mätpunkterna, Nu är det inte säkert att du lyckats pricka in precis samma x-värde i de två fallen, men vissa allmänna iakttagelser bör ändå vara möjliga. Jämför de två konfidensintervallen. Skiljer de sig väsentligt åt (eller inte)? Hur kan det förklaras? Jämför de två prediktionsintervallen. Skiljer de sig väsentligt åt (eller inte)? Hur kan det förklaras? Innan vi törs använda den skattade regressionslinjen för prediktion, måste vi naturligtvis förvissa oss om att modellen är adekvat. Ger plottarna anledning att förkasta modellen eller anser du att du på goda grunder kan använda den skattade regressionslinjen för kalibrering av ultraljudsmätaren?
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT09
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT09 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT16 Laboration 5: Regressionsanalys Syftet med den här laborationen
Laboration 4: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMSF45/MASB03, VT18 Laboration 4: Regressionsanalys Syftet med den här laborationen
1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 4 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med den här laborationen är att du skall bli mer
Laboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
Laboration 5: Regressionsanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 5 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 5: Regressionsanalys Syftet med den här laborationen är att
3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 5: Regressionsanalys Syftet med den här laborationen är
( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3.
Envariabelanalys med Matlab Under denna kurs kommer vi framförallt att använda Matlab som verktyg i Envariabelanalys. Bl.a skall vi se hur man mha Matlab kan vi rita kurvor i xy-planet, rita grafer till
1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli
Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler
UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Laboration 2: Styrkefunktion samt Regression
Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens
Datorövning 5 Regression
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5 HP FÖR E, HT-15 Datorövning 5 Regression Syftet med den här laborationen är att du skall bli
lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de
6 Skattningar av parametrarna i en normalfördelning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATIONER DEL II, HT-11 MATEMATISK STATISTIK FÖR BIO-, KEMI- OCH NANOTEKNIK För att få tillgång till de datafiler som hänvisas till
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
ÊØÓÒÐÐ ÔÖÓÙØÓÒ Ú ÖÒ ÒÐÖ ØÐÐ ÑÓÐØÐÓÒÖ ÖÖ ÚÙ ¹ºØº ÔÖ ÒÖ ¼½½¾ÜÜÜÜ ÀÒ Ö ¹ÞºØº ÔÖ ÒÖ ¼½¾½ÜÜÜÜ ÒÖ Ö ÓÒ ¹ÖºØº ÔÖ ÒÖ ½¾¼ÜÜÜÜ Ú ÇÐÖØ ¹Óкغ ÔÖ ÒÖ ¼¼ÜÜÜÜ ÒÖ ËÝ ¹ ºØº ÔÖ ÒÖ ¾½¼¼½ÜÜÜÜ Ö Ö ÓÒ ¹ÖºØº ÔÖ ÒÖ ¼¾ÜÜÜÜ ÈØÖ
Alternativ vattenbehandling
Alternativ vattenbehandling Effekter, mekanismer och perspektiv på vattenkvalitet Lasse Johansson Institutet för Ekologisk Teknik Forskningsrapporter 2 Göteborg - 2005 ÐØ ÖÒ Ø Ú Ú ØØ Ò Ò Ð Ò Ø Ö Ñ Ò Ñ
Æ ÃÌÀ ØÝ ÔÓĐ Ò ¾ ¾ ½ ½¼ ÈÊ Ì¹Ä ĐÓ Ø Ò» ¾½¼ ¼ Ñ ÜØÖ ÙÔÔ Ø ßµ Á ½¼½ ÐÝ Ò Ò Ú ÐÓØ Ä Đ Ë ÆÎÁËÆÁÆ ÊÆ Á Á¹ÍÈÈ Á ÌËÀ Đ Ì Ì Đ ÇÊËÌ Î ÖÙ Ð Ö Ø ÓÒ Î Đ ÖÑ ÒØ Ö Ò ÑÙÐ Ö Ò Ú Ò Ñ Ø Ñ Ø ÑÓ Ðк Ò ØÙÒØ È Ð ÒÒ Ðк ØØ ÐÓØ
förstå modellen enkel linjär regression och de antaganden man gör i den Laborationen är dessutom en direkt förberedelse inför Miniprojekt II.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 2, 6 DECEMBER 2017 Syfte Syftet med den här laborationen är att du ska
Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.
Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel
¾ ½½¾ Ø Ó Á ÖÙÒ ÙÖ Ñ Â Ú ¾¼¼¾ ¾¼¼ Ä ÙÖ ¾ ÒÒ ÙÖ ÓÑ ØØ Ö ¾ Ó ÑÓÑ ÒØ Ö ÓÚ º Ò Ö Ö ÓÑ Ó ÒÒ Ö Ú ØØ Ö Ô ÒÒ º Ö Ò Ò Ù Ô Ö Ò Ø Ù ØØ ØØ Ò Ö ÙØ Ø Ö ÒÖ ÔÔÓÖØ Ö Ø Ä Ó Æ ÑÒ ººººººººººººººººººººººººººººººººººººººººººººººººººººº
1 Syfte. 2 Enkel lineär regression MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Lineära regressionsmodeller i allmänhet
* ) LUNDS TEKNISK HÖGSKOL MTEMTIKCENTRUM MTEMTISK STTISTIK MTEMTISK STTISTIK K ÖR L MS HT- " # 1 Syfte Detta projekt handlar om regressionsanalys och är uppdelad i två delar Del ett handlar om enkel lineär
Resultatet läggs in i ladok senast 13 juni 2014.
Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar
¾ ½½¾ Ø ÐÓ Á ÖÙÒ ÙÖ Ñ Â Ú ¾¼¼¾ ¾¼¼ Ä ÙÖ ½ ÒÒ Ð ÙÖ ÓÑ ØØ Ö ÓÐ ÑÓÑ ÒØ Ö ÑÓÑ ÒØ ¾ ÐÐ Ö ÓÚ º Ì Ñ ÒÒ Ø ÐÐ Ú Ö Ö ÓÚ Ò Ò Ó Ø ÐÐ ØØ Ù Ö Ú ØØ Ò ÖÒ Ò ÐÖ Ö º Ö Ò Ò ÙÐÐ Ô Ö Ò Ø ÐÐ Ù ØØ ØØ Ò Ö ÙÐØ Ø Ö ÒÖ ÔÔÓÖØ Ö Ø
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på
Ë Ñ ÙÒ Ø ÆÝ ÍØ Â Ö ØØ ĐÓÖØÖÓ Ò Ø Ú Ñ ÙÒ Ø ÒÝ ØÝÖ Ð ØØ Ú Ö ÓÑ Ö ØĐÓÖ ĐÓÖ ÙØ¹ غ ØØ Đ Ö Ò ÒÝ ÔÓ Ø Ó Ò Ø ØĐ ÐÐ Ú Ö ÑĐÓØ Ø ÍÔÔ Ð Ñ ØØ Öº Î ÑÑ ÑĐÓØ ÐĐÓØ ØØ ÔÓ Ø Ò ÓÑ Ö ØĐÓÖ ÙØ Ú ØÝÖ Ð Ò Ó Ò¹ Ò Ú Ö Đ Ö Ò Ú Ö
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Linjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
F12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24
1/24 F12 Regression Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/2 2013 2/24 Dagens föreläsning Linjära regressionsmodeller Stokastisk modell Linjeanpassning och skattningar
a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?
Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten
Laboration 4 Regressionsanalys
Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Matematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
Laboration: Att inhägna ett rektangulärt område
Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.
Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
LABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistik-programmet
Utveckling av metod och prototyp för detektering av lastförskjutning
2004:076 CIV EXAMENSARBETE Utveckling av metod och prototyp för detektering av lastförskjutning MIKAEL KARLSSON PER WESTIN CIVILINGENJÖRSPROGRAMMET Institutionen för Systemteknik EISLAB Embedded Internet
Matematisk statistik kompletterande projekt, FMSF25 Övning om regression
Lunds tekniska högskola, Matematikcentrum, Matematisk statistik Matematisk statistik kompletterande projekt, FMSF Övning om regression Denna övningslapp behandlar regression och är tänkt som förberedelse
Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2
Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
TVM-Matematik Adam Jonsson
TVM-Matematik Adam Jonsson 014-1-09 LABORATION 3 I MATEMATISK STATISTIK, S0001M REGRESSIONSANALYS I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistikprogrammet
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Uppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Regressionsanalys av huspriser i Vaxholm
Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Instruktioner till Inlämningsuppgift 1 och Datorövning 1
STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och
LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel
Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer
Datorlaboration 2 Konfidensintervall & hypotesprövning
Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)
5:1 Studien ifråga, High School and beyond, går ut på att hitta ett samband mellan vilken typ av program generellt, praktiskt eller akademiskt som studenter väljer baserat på olika faktorer kön, ras, socioekonomisk
Lösningar till linjära problem med MATLAB
5B1146 - Geometri och algebra Mikrolelektronik, TH ista ösningar till linjära problem med MATAB Av: oel Nilsson, alikzus@home.se atrik osonen, pkosonen@kth.se 26-12-4 roblem 1 Man ska bestämma ett tredjegradspolynom:
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen
Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1
Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett
Föreläsning 13: Multipel Regression
Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på
Föreläsning G60 Statistiska metoder
Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Frisörer och Faktorer
Frisörer och Faktorer Seth Nielsen Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:1 Matematisk statistik Juni 2011 www.math.su.se Matematisk statistik
10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
TAMS65 - Seminarium 4 Regressionsanalys
TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression
Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Anna Lindgren 14 december, 2015 Anna Lindgren anna@maths.lth.se FMSF20 F13 1/22 Linjär regression Vi har n st par av
Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007
Lunds universitet Kemometri Lunds Tekniska Högskola FMS 210, 5p / MAS 234, 5p Matematikcentrum VT 2007 Matematisk statistik version 7 februari Datorlaboration 3 1 Inledning I denna laboration behandlas
Laboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15
1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla
Lunds tekniska högskola Matematikcentrum Matematisk statistik. FMS035: Matematisk statistik för M Datorlaboration 5
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Datorlaboration 5 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de vanligaste beroendemåtten
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar
Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens
Finansiell statistik. Multipel regression. 4 maj 2011
Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi
LABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik, LP1, HT 2015, Adam Jonsson LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i enkel regressionsanalys
Datorövning 5 Exponentiella modeller och elasticitetssamband
Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell
Resultat. Principalkomponentanalys för alla icke-kategoriska variabler
Introduktion Den första delen av laborationen baserar sig på mätdata som skapades i samband med en medicinsk studie där en ny metod för att mäta ögontryck utvärderas. Den nya metoden som testas, Applanation
Multipel linjär regression
Multipel linjär regression Motiverande exempel: effekt av sjukhusstorlek Multipel kausalitet En aktuell fråga: Svårare fall av urinblåsecancer behandlas ofta med cystektomi, det vill säga att man opererar
Föreläsning 15, FMSF45 Multipel linjär regression
Föreläsning 15, FMSF45 Multipel linjär regression Stas Volkov 2017-11-28 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F15 1/23 Linjär regression Vi har n st par av mätvärden (x i, y i ), i = 1,..., n
5 Stokastiska vektorer 9. 6 Multipel regression Matrisformulering MK-skattning av A.3 Skattningarnas fördelning...
UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI LINJÄR REGRESSION OCH STOKASTISKA VEKTORER MATEMATISK STATISTIK AK FÖR F, E, D, I, C, È; FMS 012 JOAKIM LÜBECK, SEPTEMBER 2008 Innehåll 4 Enkel linjär
Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression
Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression
Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna
Begrepp Värde (mätvärde), medelvärde, median, lista, tabell, rad, kolumn, spridningsdiagram (punktdiagram)
Aktivitetsbeskrivning Denna aktivitet är en variant av en klassisk matematiklaboration där eleverna får mäta omkrets och diameter på ett antal cirkelformade föremål för att bestämma ett approximativt värde
1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation
LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''
Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Hjälpmedel:'Valfri'räknare,'egenhändigt'handskriven'formelsamling'(4''A4Esidor'på'2'blad)' och'till'skrivningen'medhörande'tabeller.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015 HEMSIDA Kursens hemsida finns på http://www.maths.lth.se/matstat/kurser/fms032/
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande