Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen
|
|
- Siv Fransson
- för 6 år sedan
- Visningar:
Transkript
1 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen Enkel linjär regression Multipel linjär regression 1 Förberedelseuppgifter Som förberedelse till laborationen bör du läsa igenom Kapitel 20.9 (om normalfördelningsdiagram), 23, 26.3 och , 27.8 (a) (d), och hela laborationshandledningen. Till laborationens start har du med dig lösningar till uppgifterna (a) (c): (a) Ange modellen för enkel linjär regression med normalfördelade fel. Ge en grafisk tolkning av och. Hur skattar man, och 2? Vilken fördelning får och? Hur gör man konfidensintervall för, och m 0 = + (x 0 x)? Vad är ett prediktionsintervall (23.6)? Gör ett kalibreringsintervall för x 0 (23.7). Hur kan man testa huruvida linjens lutning är 0? (b) Residualanalys (26.3) är ett centralt moment i all regressionsanalys. Hur bör residualerna se ut vid en korrekt regressionsanalys? Ange några tekniker för att kontrollera detta. (c) Lös uppgift ST35. Skriv addpath c:/matstat/ikurs i MATLAB för att komma åt datamaterial och specialrutiner. 2 Enkel linjär regression Vid enkel linjär regression söker man anpassa en rät linje till datamaterialet, dvs modellen är y i = + x i + i = + (x i x) + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Vi kommer i den följande framställningen att arbeta med matrisformuleringen av modellen, Y = U + W, där de ingående matriserna har följande form: y 1 1 x 1 x y 2 Y =., U = 1 x 2 x (.., = 1 x n x y n ) och W = 1 2. n. Vi skall använda MATLAB-rutinen regress som skattar parametrar, beräknar konfidensintervall för dem, beräknar residualer och lite till. Gör help regress för att se vad den gör. Notera att det regress kallar X är den matris vi kallar U.
2 Uppgift 1: Använd regress för att räkna uppgift ST35. En n 1-kolumn med ettor fås med ones(n,1), medelvärdet av kolumnen x fås med mean(x) och två kolumner k1 och k2 läggs bredvid varandra med [k1 k2] Fallgropar För att illustrera vådan av att okritiskt anpassa en linjär modell till ett givet datamaterial har F. J. Anscombe konstruerat ett datamaterial, som ser ut på följande sätt: observation x 1, x 2, x 3 y 1 y 2 y 3 x 4 y Datamaterialet finns lagrat i filen anscombe.mat och kan laddas in i MATLAB på vanligt sätt. Med kommandot who får du reda på aktuella variabler i minnet. En lämplig början är alltid att ta sig en titt på datamaterialet. Uppgift 2: Börja med att plotta y1 mot x1. Se det ut som om linjärt samband vore lämpligt? Plotta också de andra paren mot varandra. Uppgift 3: Vi skall nu helt aningslöst anpassa en linjär modell enligt y i = + (x i x) + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. (a) Konstruera matrisen U1 (enligt notationen i det inledande avsnittet ovan) för den första datamängden och beräkna skattningen av med MATLABs inbyggda funktion regress >> U1 = [ones(size(x1)) x1-mean(x1)] >> th1hat=regress(y1,u1) (b) Beräkna den skattade regressionslinjen y1hat=u1*th1hat och rita in den i samma diagram som datamaterialet. Är det rimligt att teckna sambandet mellan den förklarande variabeln x1 och den beroende variabeln y1 som ett linjärt samband? 2
3 För att studera hur väl vår modell stämmer med givna data beräknar vi först vektorn av residualer. Om modellen är korrekt skall residualerna ungefärligen (vi använder skattade parametrar) vara observationer av likafördelade stokastiska variabler. För att undersöka hur det förhåller sig med detta utför vi en residualanalys enligt beskrivningen i kurslitteraturen. Vi kan t.ex. plotta residualerna gentemot den förklarande variabeln. Uppgift 4: Beräkna residualerna y1-y1hat och plotta dem mot x1. Om vårt modellantagande är korrekt skall vi inte kunna skönja någon systematisk variation i diagrammet. Kan du finna något beroende? Nu vill vi göra motsvarande för de övriga tre datamaterialen, dvs lösa ekvationssystemen, skatta regressionslinjerna och rita ut residualerna. För att du ska slippa göra alla dessa kommandon finns de sammanställda i MATLAB-filen anscombe.m. Skriv alltså >> anscombe för att få skattningar och plottar och besvara sedan följande frågor: Uppgift 5: Jämför värdena på de skattade koefficienterna för var och en av fyra regressionslinjerna. Studera och jämför residualplottarna för de fyra olika fallen. Hur skulle man tolka resultaten om man bara fick de skattade modellparametrarna men ingen grafisk framställning? 3 Polynomregression Datamaterialet som du skall arbeta med i detta avsnitt är koldioxidhalter uppmätta över en vulkan varje månad under en period av 32 år, dvs totalt finns = 384 mätvärden. Materialet finns i filen co2.dat, och den kan laddas in på vanligt sätt. Mätvärdena hamnar då i en vektor med namnet co2. Plotta mätvärdena. Det finns uppenbarligen en kraftig periodicitet (årsvariation) i mätningarna, och en sådan låter sig inte så lätt fångas med en polynomiell regressionsfunktion. Detta problem kan lösas på flera sätt. Ett är att införa en sinus-funktion som modellerar variationen, ett annat är att differentiera datasekvensen, dvs undersöka z i = y i y i 1 i stället för y-värdena själva. Vi skall dock välja den mycket enkla lösningen att medelvärdesbilda över varje år. Detta fordrar litet trixande i MATLAB. Uppgift 6: Först skapar vi en matris med bara nollor. >> z=zeros(12,32); Sedan överför vi mätvärdena till denna matris. >> z(:)=co2 >> plot(z) Värdena i co2 överförs här kolonnvis, så att första kolonnen i z innehåller mätvärdena från första året osv. Kontrollera gärna detta. Vi kan nu använda funktionen mean för att beräkna årsmedelvärdena. >> y=mean(z) 3
4 Slutligen vill vi att mätvärdena skall finnas i en kolonnvektor för att regressionsberäkningarna skall se ut som vanligt. >> y=y Kom ihåg att betecknar transponat. Vi har nu skapat den mätvärdesvektor vi skall arbeta med. Vi skapar även en vektor med den förklarande variabeln (årtalet, räknat från lämplig nollpunkt). >> x=(1:32) ; Plotta mätvärdena y mot x. Uppenbarligen är den periodiska variationen borta, vilket också var syftet med medelvärdesbildningen. Vi skall nu göra polynomregression på materialet, dvs vår modell är y i = + 1x i + 2x 2 i + + kx k i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Som modellen är skriven ovan är den olinjär, ty ett polynom är inte en linjär funktion, men vi kan göra den linjär genom att införa de nya förklarande variablerna x ij = x j i för j = 1,..., k, i = 1,..., n, och skriva y i = + 1x i1 + 2x i2 + + kx ik + i, i = 1,..., n. Slutligen skriver vi om modellen enligt y i = + 1(x i1 x 1 ) + 2(x i2 x 2 ) + + k(x ik x k ) + i, i = 1,..., n, där x j = 1 n arbeta med. n x ij är medelvärdet av den förklarande variabeln nummer j. Detta är den modell vi skall i=1 3.1 Enkel linjär regression Uppgift 7: Vi börjar med att anpassa en linjär funktion till datamaterialet, dvs polynomets ordningsgrad k = 1. Skattningarna av och = 1 erhålles med hjälp av funktionen regress som också kan ge konfidensintervall för dem, samt residualer (se help regress). Konstruera U-matrisen, skatta regressionsmodellen och rita upp den. Rita också upp residualerna. Verkar en rät linje vara en tillfredsställande regressionsmodell? Diagrammet visar att residualerna i mitten av mätserien tycks komma från en annan fördelning är residualerna i början och slutet av densamma. Alternativt finns en stark korrelation mellan störningarna vilket strider mot oberoendeantagandet. Vi drar alltså slutsatsen att en enkel linjär regressionsmodell inte passar det aktuella datamaterialet. 4
5 3.2 Kvadratisk regression Nästa steg är att försöka anpassa en kvadratisk funktion till mätvärdena, dvs vi använder ordningstalet k = 2 för regressionspolynomet. Uppgift 8: Skapa vektorer som innehåller de förklarande variablerna x i1 = x i och x i2 = xi 2. Skapa också den nya U-matrisen och gör om beräkningarna och plottarna för den nya modellen. (a) Verkar den kvadratiska modellen vara bättre än den linjära? Kan residualerna tänkas komma från samma fördelning? Finns något beroende? (b) Nästa steg är att undersöka om residualerna eventuellt kan komma från en normalfördelning. Gör detta genom att plotta dem i ett normalfördelningsdiagram (normplot). Verkar det rimligt att anta normalfördelade störningar? Är väntevärdet av dessa lika med 0? (c) Skatta felens varians 2 genom att dela residualkvadratsumman med n 3 = 29: >> s2 = sum(res2.^2)/29 där res2 fås ur regress. (d) Avsluta med att studera de 95 %-iga konfidensintervallen för, 1 och 2 (fås med regress). Är 2 signifikant skild från 0, dvs testa H 0 : 2 = 0 mot H 1 : 2 0 på nivån 5 %? I så fall kan vi med gott samvete anta den kvadratiska modellen före den linjära. På samma sätt kan man gå vidare och testa om en tredjegradsterm i regressionsfunktionen är relevant. Vi skall nu använda en färdigskriven funktion reggui och låta den göra grovjobbet. Uppgift 9: Undersök med help-kommandot vad funktionen reggui gör och vad den har för inparametrar. Undersök de olika möjligheterna reggui ger dig att studera en regressionsmodell och välj olika gradtal i modellen. (a) Fick du några varningsmeddelanden? Vad kan det i så fall bero på? (b) Gör en bedömning av figurerna och utskriften med de skattade parametrarna och konfidensintervallen och avgör vilken polynommodell som är mest adekvat. 5
6 4 Multipel regression och icke-linjära samband transformeringar till linjära samband Det är inte alltid som de sökta sambanden är linjära. I en del fall kan vi approximera det olinjära sambandet med ett polynom, men vi kan också leta upp en transformation som omvandlar det olinjära sambandet till ett linjärt. I många fall kan vi genom en enkel logaritmering transformera en olinjär modell till en linjär. I följande modell för syresättningens, Z ppm/dag, beroende av strömningshastighet, V fot/s, och vattendjup, H fot, skall vi utnyttja denna teknik. Vi skall skatta a, 1 och 2 i den angivna modellen med hjälp av de givna observationerna. Modell: Z a V 1 H 2 Data finns i syre.mat. Logaritmering av modellen ger ln Z = ln a + 1 ln V + 2 ln H Vi inför därför nya variabler Y = ln Z, X 1 = ln V och X 2 = ln H samt sätter modellen som = ln a. Då kan vi skriva Y = + X 1 + 2X 2 Uppgift 10: Här finns inget slumpmässigt fel angivet. Hur bör det vara definierat och hur ser transformationssambandet ut? I och med att vi redan vid enkel linjär regression arbetat med matrismodeller, erbjuder multipel linjär regression inget nytt vad beträffar parameterskattningarna. Vi får utöka matrisen U med ytterligare en kolonn för varje ny förklarande variabel, men minsta-kvadrat-problemet löser vi på samma sätt som tidigare. Uppgift 11: Konstruera de nya variablerna och tillhörande U-matris och skatta modellen, beräkna konfidensintervall för parametrarna och beräkna residualer med regress. (a) Plotta residualerna. Ser de ut som de ska? (b) Kan vi ta bort någon parameter i modellen? Vilken? Räkna om modellen. Hur blir residualerna nu? 4.1 Konfidensintervall, prediktionsintervall och kalibrering Antag att vi tar bort strömningshastigheten V ur modellen, dvs Z a H eller Y = + X. För att studerakonfidensintervall, prediktionsintervall och kalibreringintervall ska vi använda funktionen reggui vars finesser du förhoppningsvis redan bekantat dig med. Observera att du t.ex. automatiskt kan rita ut konfidensintervall och prediktionsintervall genom att markera i tillämplig ruta. >> reggui(log(h),log(z)) 6
7 Uppgift 12: Använd nu funktionen interaktivt (kryssa gärna i rutan Mark ints) för att göra följande beräkningar: (a) Beräkna den förväntade logaritmerade syresättningen då vattendjupet är e 1.4 fot, dvs då ln H = 1.4. Beräkna också ett 95%-igt konfidensintervall för detta förväntade värde. Beräkna dessutom ett 95%-igt prediktionsintervall för en framtida observation på logaritmerad syresättning, då vattendjupet är e 1.4 fot. Identifiera dessa två intervall i figuren och förklara vad det är som skiljer dem åt. (b) Räkna om värdena du fick i (a) till intervall för den o-logaritmerade syresättningen istället.... (c) Vi kan sedan skatta vattendjupet med hjälp av syresättningen genom att gå baklänges i kalibreringskurvan. Antag att vi fått mätvärdet 1.0 ppm/dag för syresättningen, dvs ln Z = ln 1 = 0. Beräkna ett 95%-igt konfidensintervall för det sanna vattendjupet. Börja med det logaritmerade vattendjupet och identifiera i figuren de kurvor som används vid den grafiska bestämningen av detta konfidensintervall och förklara varför det är just dem, man skall använda. 7
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Laboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT09
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT09 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Laboration 5: Regressionsanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 5 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 5: Regressionsanalys Syftet med den här laborationen är att
1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 4 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med den här laborationen är att du skall bli mer
Laboration 4: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMSF45/MASB03, VT18 Laboration 4: Regressionsanalys Syftet med den här laborationen
3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT16 Laboration 5: Regressionsanalys Syftet med den här laborationen
3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 5: Regressionsanalys Syftet med den här laborationen är
Datorövning 5 Regression
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5 HP FÖR E, HT-15 Datorövning 5 Regression Syftet med den här laborationen är att du skall bli
Laboration 2: Styrkefunktion samt Regression
Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
förstå modellen enkel linjär regression och de antaganden man gör i den Laborationen är dessutom en direkt förberedelse inför Miniprojekt II.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 2, 6 DECEMBER 2017 Syfte Syftet med den här laborationen är att du ska
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
Matematisk statistik kompletterande projekt, FMSF25 Övning om regression
Lunds tekniska högskola, Matematikcentrum, Matematisk statistik Matematisk statistik kompletterande projekt, FMSF Övning om regression Denna övningslapp behandlar regression och är tänkt som förberedelse
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Laboration 4 Regressionsanalys
Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler
UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,
Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,
Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Laboration 4: Hypotesprövning och styrkefunktion
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration
LABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistik-programmet
lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2
Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
1 Syfte. 2 Enkel lineär regression MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Lineära regressionsmodeller i allmänhet
* ) LUNDS TEKNISK HÖGSKOL MTEMTIKCENTRUM MTEMTISK STTISTIK MTEMTISK STTISTIK K ÖR L MS HT- " # 1 Syfte Detta projekt handlar om regressionsanalys och är uppdelad i två delar Del ett handlar om enkel lineär
Instruktioner till arbetet med miniprojekt II
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Miniprojekt II, 17 maj 2013 Instruktioner till arbetet med miniprojekt II Innan ni börjar arbeta vid Datorlaboration
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
TVM-Matematik Adam Jonsson
TVM-Matematik Adam Jonsson 014-1-09 LABORATION 3 I MATEMATISK STATISTIK, S0001M REGRESSIONSANALYS I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistikprogrammet
repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
F12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24
1/24 F12 Regression Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/2 2013 2/24 Dagens föreläsning Linjära regressionsmodeller Stokastisk modell Linjeanpassning och skattningar
LABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik, LP1, HT 2015, Adam Jonsson LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i enkel regressionsanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik. FMS035: Matematisk statistik för M Datorlaboration 5
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Datorlaboration 5 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de vanligaste beroendemåtten
oberoende av varandra så observationerna är
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 1, 1-5-7 REGRESSION (repetition) Vi har mätningarna ( 1, 1 ),..., ( n, n
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
Datorövning 5 Exponentiella modeller och elasticitetssamband
Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell
SF1901 Sannolikhetsteori och statistik, VT 2017 Datorlaboration 1 för CELTE2, CTFYS2
Matematisk Statistik SF1901 Sannolikhetsteori och statistik, VT 2017 Datorlaboration 1 för CELTE2, CTFYS2 1 Introduktion Detta är handledningen till Datorlaboration 1, ta med en utskriven kopia av den
Föreläsning 13: Multipel Regression
Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på
Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?
Matematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression
Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Anna Lindgren 14 december, 2015 Anna Lindgren anna@maths.lth.se FMSF20 F13 1/22 Linjär regression Vi har n st par av
TAMS65 DATORÖVNING 2
TAMS65 DATORÖVNING 2 Datorövningen behandlar multipel linjär regression Förberedelser Läs allmänt om regressionsanalys i boken och på föreläsningsanteckningarna Glöm inte att rensa minnet och alla fönster
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
3 Maximum Likelihoodestimering
Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till
10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Härledning av Black-Littermans formel mha allmänna linjära modellen
Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem
5 Stokastiska vektorer 9. 6 Multipel regression Matrisformulering MK-skattning av A.3 Skattningarnas fördelning...
UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI LINJÄR REGRESSION OCH STOKASTISKA VEKTORER MATEMATISK STATISTIK AK FÖR F, E, D, I, C, È; FMS 012 JOAKIM LÜBECK, SEPTEMBER 2008 Innehåll 4 Enkel linjär
TAMS65 - Seminarium 4 Regressionsanalys
TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet
Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression
Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression
träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska
Instruktioner till Inlämningsuppgift 1 och Datorövning 1
STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 10 Johan Lindström 27 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F10 1/26 Repetition Linjär regression Modell Parameterskattningar
Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Laboration 3: Parameterskattning och Fördelningsanpassning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Tentamen för kursen. Linjära statistiska modeller. 17 februari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,
Grundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Multipel linjär regression
Multipel linjär regression Motiverande exempel: effekt av sjukhusstorlek Multipel kausalitet En aktuell fråga: Svårare fall av urinblåsecancer behandlas ofta med cystektomi, det vill säga att man opererar
Föreläsning G60 Statistiska metoder
Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/200, HT-03 Laboration 5: Intervallskattning och hypotesprövning Syftet med den här
Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007
Lunds universitet Kemometri Lunds Tekniska Högskola FMS 210, 5p / MAS 234, 5p Matematikcentrum VT 2007 Matematisk statistik version 7 februari Datorlaboration 3 1 Inledning I denna laboration behandlas
Statistiska samband: regression och korrelation
Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Bayesiansk statistik, 732g43, 7.5 hp
Bayesiansk statistik, 732g43, 7.5 hp Moment 2 - Linjär regressionsanalys Bertil Wegmann STIMA, IDA, Linköpings universitet Bertil Wegmann (STIMA, LiU) Bayesiansk statistik 1 / 29 Översikt moment 2: linjär
1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att
Laboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
Matematikcentrum VT 2007 Matematisk statistik 14 januari Datorlaboration 1
Lunds universitet Kemometri Lunds Tekniska Högskola FMS 210, 5p / MAS 234, 5p Matematikcentrum VT 2007 Matematisk statistik 14 januari 2007 Datorlaboration 1 1 Inledning I denna laboration behandlas Kapitel
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
1 Bakgrund DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF Något om Radon och Radonmätningar. 1.2 Statistisk modell
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för punkt- och intervallskattningar.