Datorövning 5 Regression
|
|
- Kurt Mattsson
- för 8 år sedan
- Visningar:
Transkript
1 Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5 HP FÖR E, HT-15 Datorövning 5 Regression Syftet med den här laborationen är att du skall bli mer förtrogen med Enkel linjär regression Multipel linjär regression Specialrutiner och datamaterial finns att hämta på kursens hemsida: 1 Förberedelseuppgifter 1. Läs igenom denna handledning och lös uppgift ST35 i övningshäftet. 2. Förvissa dig om att du förstår hur regression fungerar, speciellt skillnaden mellan konfidensintervall för linjen och prediktionsintervall. 3. Redovisas vid laborationens start! (a) Om vi skattat lutningen b i en enkel linjär regression till b = 0.75 och beräknat ett 95 % konfidensintervall I b = ( 0.95, 2.45), kan vi då påstå att det finns ett statistiskt signifikant linjärt samband mellan x och y? (b) Skriv upp hur residualerna i en enkel linjär regression beräknas. (c) Hur skattar man s med hjälp av residualerna? (d) Hur bör residualerna se ut, enligt modellen? Hur kan man kontrollera det? 2 Enkel linjär regression Vid enkel linjär regression söker man anpassa en rät linje till datamaterialet, dvs modellen är y i = a + bx i + e i, i = 1,..., n, där e i är oberoende likafördelade störningar med väntevärdet 0 och variansen s 2. Vi kommer i den följande framställningen att arbeta med matrisformuleringen av modellen, Y = Xb + e, där de ingående matriserna har följande form: y 1 1 x 1 y 2 Y =., X = 1 x 2.., b = y n 1 x n ( ) a b e 1 e 2 och e =.. e n Som uppvärmning använder vi MATLAB-funktionen regress för att lösa uppgift ST35:
2 2 DATORÖVNING 5, FMSF20 HT-15 >> help regress >> x=[1:8] ; % En kolumn med x-värden. >> y=[ ] ; % En kolumn med y-värden. >> X=[ones(size(x)) x]; % En kolumn med ettor och en med % x-värdena. >> [b,bint]=regress(y,x) % b = skattade beta-parametrar, % bint = konf.int. för beta-parametrarna. >> mu=x*b; % Den skattade linjen. >> plot(x,y, *,x,mu, - ) % Rita obervationer och skattad linje. >> xlabel( x: inställning ) >> ylabel( y: dimension ) Uppgift: Vad blev a och b? Jämför b med din lösning. Uppgift: Vad blev I a och I b? Jämför I b med din lösning. På kurshemsidan finns en specialskriven funktion, reggui.m (med ett antal hjälpfiler). Den både skattar modellparametrarna, och ritar upp data, skattad linje, residualer och konfidens- och prediktionsintervall. Spara ner den, och dess hjälpfiler, från kurshemsidan och lös uppgift ST35 igen: >> help reggui >> reggui(x,y) Uppgift: Identifiera a och b i figuren och jämför med dina tidigare beräkningar. Uppgift: Identifiera I a och I b i figuren och jämför med dina tidigare beräkningar. Uppgift: Den inritade skattade linjen är röd. Det betyder att minst en av parametrarna inte är signifikant skild från noll. Vilken/vilka? Uppgift: Vi kan passa på att titta på residualerna också, dvs e i = y i a b x i. I den nedre vänstra figuren är e i ritade mot x i. Tänk efter att det stämmer. Ser residualerna ut som de ska? Residualerna ska vara normalfördelade också. I den nedre högra figuren är de utritade i ett normalfördelningspapper. På x-axeln finns residualerna i storleksordning. På y-axeln finns deras empiriska fördelningsfunktion, se laboration 1, men skalan är satt så att en normalfördelning blir en rät linje medan alla andra fördelningar blir krokiga. Uppgift: Ser det ut som om residualerna kan vara normalfördelade? 3 Kalibrering av flödesmätare Vi ska nu studera ett lite större problem med hjälp av reggui.
3 DATORÖVNING 5, FMSF20 HT-15 3 Bakgrund Kalibrering av en flödesmätare genomförs oftast i en speciell kalibreringsrigg. Här finns en referensmätare eller referensmetod för att mäta flödet. För att erhålla en god bild av hur den testade flödesmätaren fungerar utförs kalibreringen vid ett stort antal flöden. Tyvärr kan man även vid kalibrering råka ut för situationer där den testade mätaren störs av testförhållandena. Om t.ex. pulsationer uppträder i flödet kommer detta att negativt påverka resultaten för den testade mätaren. Detta visar sig oftast vid låga flödeshastigheter, då ultraljudsmätare tenderar att överskatta flödeshastigheten. Detta orsakas av att vi erhåller en laminär flödesprofil i röret, vilket medför att en ultraljudsmätare kan överskatta flödet med upp till 33 % vid fullt utbildad laminär strömning. Vid låga flöden ser vi även att vi har stora fluktuationer i resultaten. Detta beror troligen på att vi har flödespulsationer i flödesriggen vilka kommer att orsaka fluktuerande resultat för ultraljudsflödesmätaren, bland annat orsakat av s.k. aliasproblem (d.v.s. mätsystemet arbetar med en för låg sampelfrekvens i förhållande till frekvenserna hos det uppmätta). Vid höga flöden uppträder troligen kavitation (ett slags bubbelbildning) inne i ultraljudsflödesmätaren vilket kan förklara de positiva felen och den ökade spridningen för strömningshastigheter över 6.3 m/s. Metod Vi har nu tillgång till data från en kalibrering av en ultraljudsflödesmätare. Datamaterialet, som kommer från institutionen för värme- och kraftteknik, omfattar 71 mätningar och är lagrat i matrisen flow, där varje rad innehåller data från en mätning, variabeln fx2 avser referensflödesmätningar från kalibreringsriggen och fy2 avser respektive flöden uppmätta med den testade ultraljudsflödesmätaren (flödeshastigheterna givna i enheten m/s). Den använda kalibreringsriggen använder kontinuerlig vägning av det genomströmmande vattnet för att bestämma ett massflöde som sedan kan räknas om till medelhastighet i röret, vilket är vad ultraljudsmätaren mäter. Tanken är här att vi med hjälp av de gjorda mätningarna med givare och referens skall skatta parametrarna i en enkel linjär regressionsmodell. Vi antar då att referensmätningarnas fel kan försummas i jämförelse med ultraljudsgivarens (varför måste vi bekymra oss om detta?) och att ultraljudsgivarens fel är oberoende, likafördelade och har väntevärdet noll. För att studera detta datamaterial ska vi använda funktionen reggui vars finesser du förhoppningsvis redan bekantat dig med. Observera att du t.ex. automatiskt kan rita ut konfidensintervall och prediktionsintervall genom att markera i tillämplig ruta. Genom att kryssa i Mark ints och sedan klicka (och dra) i figuren kan man låta reggui beräkna och rita intervallen för ett visst x 0 -värde. För att bilden skall bli tydligare börjar vi med att studera en liten delmängd av materialet, 10 talpar av flödesmätningar som ges i variablerna fx1 och fy1. >> load flow.mat >> reggui(fx1,fy1) Använd nu funktionen interaktivt för att göra följande beräkningar: Uppgift: Avläs det förväntade värdet enligt ultraljudsmätaren, då flödet enligt kalibreringsriggen är 0.40 m/s. Uppgift: Avläs ett 95 %-igt konfidensintervall för detta förväntade värde. Uppgift: Avläs ett 95 %-igt prediktionsintervall för en framtida observation från ultraljudsmätaren, då kalibreringsriggen ger mätvärdet 0.40 m/s.
4 4 DATORÖVNING 5, FMSF20 HT-15 Uppgift: Tänk efter vad det är som skiljer de två intervallen åt. När vi sedan skall använda den kalibrerade ultraljudsmätaren innebär det i princip att vi läser baklänges i kalibreringskurvan. Antag att vi med ultraljudsmätaren får mätvärdet 0.48 m/s. Uppgift: Avläs ett 95 %-igt kalibreringsintervall för den sanna flödeshastigheten (dvs det värde som kalibreringsriggen skulle ge). Identifiera i figuren de kurvor som används vid den grafiska bestämningen av detta konfidensintervall och tänk efter varför det är just dem, man skall använda. Uppgift: I vilka av intervallen ovan (konfidensintervallet för linjen, prediktionsintervallet oxh kalibreringsintervallet) är det viktigt att mätfelen är normalfördelade och har konstant varians? Dvs, vilka av intervallen har en bredd som inte kan göras hur liten som helst genom att öka antalet observationer? Intervallen, särskilt kalibreringsintervallet, är oanvändbart breda men 10 observationer är för litet för att kunna ge bra skattningar. Låt oss istället använda hela datamaterialet: >> reggui(fx2,fy2) Upppgift: Avläs det förväntade värdet enligt ultraljudsmätaren, då flödet enligt kalibreringsriggen är 0.40 m/s. Uppgift: Avläs ett 95 %-igt konfidensintervall för detta förväntade värde. Uppgift: Avläs ett 95 %-igt prediktionsintervall för en framtida observation från ultraljudsmätaren, då kalibreringsriggen ger mätvärdet 0.40 m/s. Uppgift: Antag att vi med ultraljudsmätaren får mätvärdet 0.48 m/s och avläs ett 95 %-igt kalibreringsintervall för den sanna flödeshastigheten (dvs det värde som kalibreringsriggen skulle ge). Uppgift: Jämför intervallbredderna baserade på de 10 mätningarna med motsvarande intervallbredder för den modell som är anpassad till alla de 71 mätpunkterna. Skiljer de två konfidensintervallen väsentligt åt (eller inte)? Hur kan det förklaras? Uppgift: Jämför de två prediktionsintervallen. Skiljer de sig väsentligt åt (eller inte)? Hur kan det förklaras?
5 DATORÖVNING 5, FMSF20 HT-15 5 Uppgift: Jämför de två kalibreringsintervallen. Skiljer de sig väsentligt åt (eller inte)? Hur kan det förklaras? Uppgift: Innan vi törs använda den skattade regressionslinjen för prediktion, måste vi naturligtvis förvissa oss om att modellen är adekvat. Ger residualplottarna anledning att förkasta modellen eller anser du att du på goda grunder kan använda den skattade regressionslinjen för kalibrering av ultraljudsmätaren? 4 Polynomregression Datamaterialet som du skall arbeta med i detta avsnitt är koldioxidhalter uppmätta över en vulkan varje månad under en period av 32 år, dvs totalt finns = 384 mätvärden. Materialet finns i filen co2.mat. Mätvärdena ligger i variabeln co2data. Plotta mätvärdena: >> load co2 >> plot(co2data) Det finns uppenbarligen en kraftig periodicitet (årsvariation) i mätningarna, och en sådan låter sig inte så lätt fångas med en polynomiell regressionsfunktion. Detta problem kan lösas på flera sätt. Ett är att införa en sinus-funktion som modellerar variationen, ett annat är att differentiera datasekvensen, dvs undersöka z i = y i y i 1 i stället för y-värdena själva. Vi skall dock välja den mycket enkla lösningen att medelvärdesbilda över varje år. Årsmedelvärdena finns i variabeln co2medel. Vi skapar även en vektor med den förklarande variabeln (årtalet, räknat från lämplig nollpunkt). >> x=(1:32) ; >> plot(x,co2medel, * ) Uppenbarligen är den periodiska variationen borta, vilket också var syftet med medelvärdesbildningen. Vi skall nu göra polynomregression på materialet, dvs vår modell är y i = b 0 + b 1 x i + b 2 x 2 i b k x k i + e i, i = 1,..., n, där e i är oberoende likafördelade störningar med väntevärdet 0 och variansen s 2. Som modellen är skriven ovan är den olinjär, ty ett polynom är inte en linjär funktion, men vi kan göra den linjär genom att införa de nya förklarande variablerna x ji = x j i för j = 1,..., k, i = 1,..., n, och skriva y i = b 0 + b 1 x 1i + b 2 x 2i b k x ki + e i, i = 1,..., n. Vi börjar med att anpassa en linjär funktion till datamaterialet, dvs polynomets ordningsgrad k = 1. Skattningarna av b 0 och b 1 erhålles med hjälp av funktionen reggui: >> reggui(x,co2medel) Detta är den modell vi skall arbeta med. Uppgift: Verkar en rät linje vara en tillfredsställande regressionsmodell? Diagrammet visar att residualerna i mitten av mätserien tycks komma från en annan fördelning är residualerna i början och slutet av densamma. Alternativt finns en stark korrelation mellan störningarna vilket strider mot oberoendeantagandet. Vi drar alltså slutsatsen att en enkel linjär regressionsmodell inte passar det aktuella datamaterialet. Nästa steg är att försöka anpassa en kvadratisk funktion till mätvärdena, dvs vi använder ordningstalet k = 2 för regressionspolynomet (använd knappen degree i reggui).
6 6 DATORÖVNING 5, FMSF20 HT-15 Uppgift: Verkar den kvadratiska modellen vara bättre än den linjära? Kan residualerna tänkas komma från samma fördelning? Kan de tänkas vara normalfördelade? Uppgift: Avsluta med att studera de 95 %-iga konfidensintervallen för b 0, b 1 och b 2. Är b 2 signifikant skild från 0, dvs, om H 0 : b 2 = 0 och H 1 : b 2 = 0, kan vi då förkasta H 0 (på nivån 5 %)? I så fall kan vi med gott samvete anta den kvadratiska modellen före den linjära. Uppgift: På samma sätt kan man gå vidare och testa om en tredjegradsterm i regressionsfunktionen är relevant. Undersök de olika möjligheterna reggui ger dig att studera en regressionsmodell och välj olika gradtal i modellen. Fick du några varningsmeddelanden i kommandofönstret? Vad kan det i så fall bero på? Uppgift: Gör en bedömning av figurerna och utskriften med de skattade parametrarna och konfidensintervallen och avgör vilken polynommodell som är mest adekvat. 5 Multipel regression Frost Hur beror antalet frostdagar i en ort på höjd och latitud? Om man känner höjden och latituden hos en ort kan man då förutsäga (prediktera) antalet frostdagar? Man noterade det genomsnittliga antalet frostdagar vid 20 olika väderstationer i West Virginia. Detta tillsammans med höjden över havet (feet) och stationens latitud finns i filen frost.mat. Väderstationernas namn finns i variabeln namn, höjden över havet i x1, latituden i x2 och antalet frostdagar i y. 5.1 Vilken typ av modell? För att få en första uppfattning om eventuella samband, rita punktdiagram över den beroende variabeln gentemot de oberoende variablerna var och en för sig, dvs rita dels Frostduration mot Höjd över havet och dels Frostduration mot Latitud. >> load frost >> figure(1) >> plot(x1,y, * ) >> xlabel( x1: höjd över havet ) >> ylabel( y: antal frostdagar ) >> figure(2) >> plot(x2,y, * ) >> xlabel( x2: latitud ) >> ylabel( y: antal frostdagar ) Uppgift: Ger bilderna någon antydan om att ett linjärt samband skulle kunna råda mellan förklarande och beroende variabler? Använd reggui för att göra två enkla linjära modeller, en där frostdagarna beror bara på höjden över havet och en där de istället beror på latituden.
7 DATORÖVNING 5, FMSF20 HT-15 7 Uppgift: Om man bara tänker använda en av x-variablerna, vilken ska det vara? Verkar det rimligt att latituden inte verkar spela någon roll? I en enkel linjär regression kan man inte ta hänsyn till flera faktorer samtidigt. Man riskerar då att missa inverkan av vissa x-variabler när de drunknar i ett mycket starkare samband med andra x-variabler. I multipel regression tar man hänsyn till alla x-variablerna samtidigt och har större möjligheter att få med även svagare, men viktiga, samband. 1 Då undersöker man hur k uppmätta variabler, x 1,..., x k, gemensamt påverkar en responsvariabel, y. I vårt problem har vi två förklarande variabler, dvs k = 2. Regressionsmodellen är alltså av formen y i = b 0 + b 1 x 1i + b 2 x 2i + e i, i = 1,..., n där man tänker sig att alla e i är oberoende och normalfördelade med väntevärde 0 och varians s 2. Uppgift: Identifiera de olika variablerna i modellen ovan i vårt frostproblem. Vad är alltså er ansatta modell i just detta exemplet? 5.2 Regression med regress Reggui är en specialskriven funktion för våra grundkurser i matematisk statistik. Den fungerar emellertid bara för enkel linjär regression och polynomregression, den går alltså inte att använda här. Om man vill arbeta med multipel linjär regression (flera x-variabler) måste man använda Matlabs inbyggda funktion för regressionsanalys, regress. Börja med att bygga upp matrisen X som, i det här fallet, är en (20 3)-matris (det finns 20 st observationer av x1-värden respektive x2-värden) med första kolumnen enbart ettor, andra kolumnen bestående av x1-värdena och tredje av x2-värdena. Vektorn b ger skattningarna av parametrarna b 0, b 1 och b 2 medan deras konfidensintervall, med konfidensgraden 95 %, finns i matrisen Ib. Vektorn r ger residualerna. >> X = [ones(size(x1)) x1 x2] >> [b Ib r] = regress(y,x) Uppgift: Vad blev skattningarna av b 0, b 1 och b 2? Ange också motsvarande tre konfidensintervall. Uppgift: Vilka av modellparametrarna är signifikant skilda från noll (på 5 %-nivån)? Kan vi förenkla modellen och ta bort någon av variablerna? Uppgift: Stämmer detta med era slutsatser från de två enkla regressionerna? Försök förklara skillnaden. Vi vill också kontrollera att residualerna ser ut som de ska. Plotta dem mot var och en av x- variablerna och gör en normplot: 1 Den som är intresserad kan lära sig mycket mer om regression och modellval i kursen FMSN30 Linjär och logistisk regression.
8 8 DATORÖVNING 5, FMSF20 HT-15 >> figure(3) >> plot(x1,r, * ) >> xlabel( x1: höjd över havet ) >> ylabel( residualer ) >> figure(4) >> plot(x2,r, * ) >> xlabel( x2: latitud ) >> ylabel( residualer ) >> figure(5) >> normplot(r) Uppgift: Finner du något att anmärka på, eller anser du att regressionsmodellen är acceptabel? Vi vill nu använda modellen för att skatta medelfrostdurationen för en ort som ligger på 1000 fots höjd på 40 nordlig latitud. Vi vill också beräkna att 95 % konfidensintervall för den förväntade frostdurationen: >> x0=[ ]; % 1000 feet, 40 grader >> mu0=x0*b >> Q0=r *r % summan av kvadraterna på residualerna >> f=length(y)-length(b) % f=n-(k+1) >> s = sqrt(q0/f) >> dmu0 = s*sqrt(x0*inv(x *X)*x0 ) % medelfelet för mu-skattningen >> Imu0= mu0 + tinv(1-0.05/2, f) * dmu0*[-1 1] Uppgift: Hur stor blev medeldurationen och konfidensintervallet? Uppgift: Hur stor skulle medeldurationen (och konfidensintervallet) varit om orten istället legat på 2000 fots höjd? Vi kan även rita det skattade regressionsplanet i en tredimensionell bild. Funktionen planplot.m på kurshemsidan är skriven just för denna uppgift, men den utnyttjar Matlabs standardfaciliteter för 3D-plottar, >> planplot(x1, x2, b, y) % där b = vektorn med parameterskattningar >> xlabel( x1: höjd över havet ) >> ylabel( x2: latitud ) >> zlabel( y: antal frostdagar ) Uppgift: Relatera figuren till de två första figurerna ni ritade, med frostduration gentemot höjd över havet respektive latitud. Ni kan rotera figuren som skapas av planplot.
Laboration 5: Regressionsanalys
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 5 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 5: Regressionsanalys Syftet med den här laborationen är att
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 5: Regressionsanalys Syftet med den här laborationen är
Laboration 4: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMSF45/MASB03, VT18 Laboration 4: Regressionsanalys Syftet med den här laborationen
Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli
1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 4 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med den här laborationen är att du skall bli mer
3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT16 Laboration 5: Regressionsanalys Syftet med den här laborationen
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT09
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT09 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
förstå modellen enkel linjär regression och de antaganden man gör i den Laborationen är dessutom en direkt förberedelse inför Miniprojekt II.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 2, 6 DECEMBER 2017 Syfte Syftet med den här laborationen är att du ska
Laboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli
Laboration 2: Styrkefunktion samt Regression
Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens
Lunds tekniska högskola Matematikcentrum Matematisk statistik. FMS035: Matematisk statistik för M Datorlaboration 5
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Datorlaboration 5 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de vanligaste beroendemåtten
lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
1 Syfte. 2 Enkel lineär regression MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Lineära regressionsmodeller i allmänhet
* ) LUNDS TEKNISK HÖGSKOL MTEMTIKCENTRUM MTEMTISK STTISTIK MTEMTISK STTISTIK K ÖR L MS HT- " # 1 Syfte Detta projekt handlar om regressionsanalys och är uppdelad i två delar Del ett handlar om enkel lineär
Matematisk statistik kompletterande projekt, FMSF25 Övning om regression
Lunds tekniska högskola, Matematikcentrum, Matematisk statistik Matematisk statistik kompletterande projekt, FMSF Övning om regression Denna övningslapp behandlar regression och är tänkt som förberedelse
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
oberoende av varandra så observationerna är
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 1, 1-5-7 REGRESSION (repetition) Vi har mätningarna ( 1, 1 ),..., ( n, n
repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Laboration 4 Regressionsanalys
Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression
Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Anna Lindgren 14 december, 2015 Anna Lindgren anna@maths.lth.se FMSF20 F13 1/22 Linjär regression Vi har n st par av
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
F12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24
1/24 F12 Regression Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/2 2013 2/24 Dagens föreläsning Linjära regressionsmodeller Stokastisk modell Linjeanpassning och skattningar
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
Enkel linjär regression
Enkel linjär regression Fäders och söners längder Om man anpassar en linje y=α+βx, så passar y = 86.07+0.51x bäst. Uppenbart räcker inte linjen som förklaring. Det finns slumpmässig variation, som gör
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 10 Johan Lindström 27 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F10 1/26 Repetition Linjär regression Modell Parameterskattningar
Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på
Instruktioner till arbetet med miniprojekt II
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Miniprojekt II, 17 maj 2013 Instruktioner till arbetet med miniprojekt II Innan ni börjar arbeta vid Datorlaboration
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
TAMS65 DATORÖVNING 2
TAMS65 DATORÖVNING 2 Datorövningen behandlar multipel linjär regression Förberedelser Läs allmänt om regressionsanalys i boken och på föreläsningsanteckningarna Glöm inte att rensa minnet och alla fönster
Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression
Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression
Datorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
Grundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Föreläsning 15, FMSF45 Multipel linjär regression
Föreläsning 15, FMSF45 Multipel linjär regression Stas Volkov 2017-11-28 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F15 1/23 Linjär regression Vi har n st par av mätvärden (x i, y i ), i = 1,..., n
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
1 Bakgrund DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF Något om Radon och Radonmätningar. 1.2 Statistisk modell
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för punkt- och intervallskattningar.
Laboration 4: Hypotesprövning och styrkefunktion
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration
Matematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
Föreläsning G60 Statistiska metoder
Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
5 Stokastiska vektorer 9. 6 Multipel regression Matrisformulering MK-skattning av A.3 Skattningarnas fördelning...
UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI LINJÄR REGRESSION OCH STOKASTISKA VEKTORER MATEMATISK STATISTIK AK FÖR F, E, D, I, C, È; FMS 012 JOAKIM LÜBECK, SEPTEMBER 2008 Innehåll 4 Enkel linjär
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Multipel linjär regression
Multipel linjär regression Motiverande exempel: effekt av sjukhusstorlek Multipel kausalitet En aktuell fråga: Svårare fall av urinblåsecancer behandlas ofta med cystektomi, det vill säga att man opererar
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
SAMBANDSANALYS REGRESSION OCH KORRELATION CENTRUM SCIENTIARUM MATHEMATICARUM HT Matematikcentrum Matematisk statistik
SAMBANDSANALYS REGRESSION OCH KORRELATION HT 21 Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM Innehåll 1 Innehåll 1 Samband mellan två eller flera variabler 3 2 Enkel linjär
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Tentamen för kursen. Linjära statistiska modeller. 17 februari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,
Föreläsning 13: Multipel Regression
Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Datorövning 1 Enkel linjär regressionsanalys
Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Laboration 3: Icke-parametrisk korrelations- och regressionsanalys
STOCKHOLMS UNIVERSITET 7 oktober 2004 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Laboration 3: Icke-parametrisk korrelations- och regressionsanalys I den här laborationen
Minsta-kvadratmetoden
CTH/GU STUDIO b TMV036c - 01/013 Matematiska vetenskaper Minsta-kvadratmetoden Analys och Linjär Algebra, del C, K1/Kf1/Bt1 1 Inledning Ett ofta förekommande problem inom teknik och vetenskap är att koppla
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Instruktioner till Inlämningsuppgift 1 och Datorövning 1
STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Föreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
FÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
3 Maximum Likelihoodestimering
Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5
LÖSNINGAR TILL Matematisk statistik Tentamen: 29 7 kl 8 3 Matematikcentrum FMSF45 Matematisk statistik AK för D,I,Pi,F, 9 h Lunds universitet MASB3 Matematisk statistik AK för fysiker, 9 h. För tiden mellan
SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2
Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Datorövning 6 Extremvärden och Peak over Threshold
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 6 Extremvärden och Peak over Threshold I denna datorövning ska vi använda mätningarna
F19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler
UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,