Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
|
|
- Patrik Strömberg
- för 8 år sedan
- Visningar:
Transkript
1 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1
2 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest för hela regressionsmodellen förklaringsgraden, R p-värden för de individuella variablerna eller t-kvoter Residualanalys, för att avgöra om regressionsantagandena är uppfyllda
3 Visuell bedömning: Regression Plot Hyra = Kv-meter S = R-Sq = 85.5 % R-Sq(adj) = 84.8 % Hyra Kv-meter
4 Hur bra är modellen som vi har anpassat? The regression equation is Hyra = Kv-meter enskilda p-värden Predictor Coef SE Coef T P Constant Kv-meter S = 55.5 R-Sq = 85.5% R-Sq(adj) = 84.8% Analysis of Variance R och justerad R Source DF SS MS F P Regression Residual Error Total F-test och dess p-värde Residualanalys kan också göras i MINITAB 4
5 Vi har redan räknat med ett mått för den oförklarade variationen: Residualkvadratsumman, som också ofta betecknas med SSE (Sum of Squared Errors). SSE n y i b0 b1 x i i1 Ett mått på den totala variationen är också ganska enkelt att ta fram: variationen i responsvariabeln, SS yy, som i regressionssammanhang ofta kallas för SST (Totalkvadratsumman). SST n y i y i1 5
6 För att göra kvadratsummeuppdelningen komplett kan vi beräkna SSR (Sum of Squares Regression), den förklarade variationen. SSR = SST - SSE eller SST = SSR + SSE 6
7 Förklaringsgrad och korrelationskoefficient Förklaringsgraden betecknas R R SSR SST Ju högre förklaringsgrad, desto bättre lyckas vår skattade modell förklara variationen i data Modellen kan anses vara bra. I vårt exempel blev R =0, 855, dvs. att 85.5% av all variation i y kan förklaras med hjälp av modellen. 7
8 Utvikning: Kom ihåg korrelationskoefficienten r x i x yi y x x y y i SSxy SS SSxx yy i som mäter det linjära sambandet mellan x och y. I motsats till regressionsmodellen finns det i korrelationskoefficienten ingen kausalitet: regressionsmodellen: x påverkar y, men inte tvärtom korrelationskoefficienten: x och y hänger ihop 8
9 Korrelationskoefficienten ligger alltid mellan 1 och 1. Om den är = 1 eller = 1 säger man att det råder ett perfekt linjärt samband mellan y och x. Om r = 0 finns inget linjärt samband mellan y och x. (Det kan dock finnas andra samband, t.ex. kvadratiska) I vårt fall blir korrelationskoefficienten r=0.95 Observera att r =(0.95) =0.8556R Men detta gäller bara i fallet med en förklaringsvariabel, inte om vi inkluderar fler oberoende variabler i modellen. 9
10 F-test: F SSR SSE MSR n MSE MSE har vi träffat på förut, men då kallade vi den för. I MINITAB-utskriften kan vi hitta både MSE och s. Om vi bara har en förklarande variabel, så är SSR/1=MSR. Värdet på F-testet ska jämföras med F-fördelningen med 1 och (n- ) frihetsgrader I vårt fall: F s Ur tabellen: F 0.05,1, signifikant 10
11 The regression equation is Hyra = Kv-meter Predictor Coef SE Coef T P Constant Kv-meter S = 55.5 R-Sq = 85.5% R-Sq(adj) = 84.8% Analysis of Variance Source DF SS MS F P SSR Regression SSE Residual Error Total SSE n MSE s SST MSE s MSR e s MSE F-test 11
12 Kap 4,1-4,5: Multipel linjär regression y 0 1 x 1 x k x k I stället för en förklarande variabel kan vi inkludera flera. Vi får dock tänka på att inte inkludera sådana variabler som inte har någon eller som bara har marginell betydelse för responsvariabeln. Återigen inkluderas en felterm i modellen, som står för den del i variationen av y som inte kan förklaras genom modellen. Feltermen har medelvärde 0 och varians s och är normalfördelad och varje är oberoende av de andra. 1
13 t-test och konfidensintervall för de enskilda parametrarna ( 1,,..., k ) i modellen beräknas i princip på samma sätt som förut. Men nu använder man en t-fördelning med n-k-1 frihetsgrader. F-test korrigeras lite genom att inkludera k (antal förklarande variabler i modellen): F SSR SSE k MSR n k 1 MSE Observera att formeln är den samma som förut om man sätter k=1. Förklaringsgrad beräknas fortfarande: R SSR SST 13
14 14 Kvadratsummeuppdelningen gäller också: SST = SSR + SSE SST, SSR beräknas som förut, och även SSE beräknas som förut: n i i i n i ki k i i i y y x b x b x b b y SSE ˆ b k x k x b x b b y ˆ eftersom: Observera att alla sådana beräkningar görs för varje observation, även om index i inte alltid är med I formlerna.
15 Konfidensintervall för punktskattningen och prognosintervall for punktprognosen beräknas i princip på samma sätt Konfidensintervall yˆ ( nk 1) t / s "Distance value" 0 Prognosintervall yˆ ( nk 1) t / s 1 "Distance value" 0 Men Distance value kan inte beräknas lika enkelt som i fallet med en förklarande variabel. Däremot kan man ta den rätt enkelt från datorutskriften (senare). 15
16 Exempel: Följande datamaterial innehåller uppgifter om 150 slumpmässigt valda fastigheter i USA Column Name Count Description Modell Översättning C1 Price 150 Price y pris C Area 150 Area in square feet x1 bostadsyta C3 Acres 150 Acres x tomtyta C4 Rooms 150 Number of rooms x3 antal rum C5 Baths 150 Number of baths x4 antal badrum Källa: MTBWIN /Student1/HOMES.MTW 16
17 Pris mot bostadsyta Spridningsdiagram = Scatterplot Price Area
18 Pris mot tomtyta Price Acres 0 18
19 Pris mot antal rum Price Rooms 13 19
20 Pris mot antal badrum Price Baths 3 4 0
21 Vi börjar med en modell som inte inkluderar alla förklarande variabler, men bara de som verkar viktigast: bostadsyta och antal rum. MINITAB 1
22 Regression Analysis: Price versus Area, Rooms The regression equation is Price = Area Rooms yˆ x1 141 x 3 Predictor Coef SE Coef T P Constant Area Rooms Signifikanstest för t.ex. 1: t b s b sb är den skattade standardavvikelsen av b Vi jämför t med t-fördelningen med n-k-1= frihetsgrader.
23 t-fördelning med 147 frihetsgrader För ett dubbelsidig test är p-värdet sannolikheten att få ett värde t eller ännu större eller ett värde t eller ännu mindre t=6.6 3
24 Regression Analysis: Price versus Area, Rooms The regression equation is Price = Area Rooms Predictor Coef SE Coef T P Constant Area Rooms inte signifikant 4
25 s MSE R SSR SST S = R-Sq = 48.6% R-Sq(adj) = 47.9% Analysis of Variance Source DF SS MS F P Regression 1.573E Residual Error E Total E+11 F SSR SSE k MSR n k 1 MSE F-testet är signifikant 5
26 Vad står F-testet för i detta fall? F-testet testar om den linjära regressionsmodellen är signifkant eller inte. Om vi har flera förklarande variabler, då testar vi om H 0 : alla parametrar 1,,..., k är lika med 0 H 1 : minst en av parametrarna 1,,..., k är inte 0 Om vi kan förkasta denna noll-hypotes så använder vi t-testet för var och en av de enskilda parametrarna. 6
27 7 Vad är R-sq(adj) då? Justerad R : k n n n k R R Det vanliga R -värdet ökar alltid när man lägger till fler förklarande variabler. Men det gör nödvändigtvis inte justerade R -värdet
28 Kap 4,6: Punktskattning och punktprognos Nu vill vi göra en prognos för priset på en fastighet med bostadsytan: 3000 ft och antal rum: 6, och ett 95% prediktionsintervall i MINITAB 8
29 Regression Analysis: Price versus Area, Rooms Samma utskrift som tidgare Predicted Values for New Observations New Obs Fit SE Fit 95.0% CI 95.0% PI ( , 36717) ( 1489, 76564) XX X denotes a row with X values away from the center XX denotes a row with very extreme X values Values of Predictors for New Observations New Obs Area Rooms yˆ (147) t0.05 s 1 "Distance value" 0 Prediktionsintervall 9
30 Regression Analysis: Price versus Area, Rooms Samma utskrift som tidgare Predicted Values for New Observations New Obs Fit SE Fit 95.0% CI 95.0% PI ( , 36717) ( 1489, 76564) XX X denotes a row with X values away from the center XX denotes a row with very extreme X values Values of Predictors for New Observations New Obs Area Rooms yˆ (147) t0.05 s "Distance value" 0 Konfidensintervall för det genomsnittliga priset på fastigheter med 3000 ft och 6 rum. 30
31 Distance value kan, som sagt, inte enkelt beräknas från datamaterialet om vi har fler än en förklarande variabel. Men den kan beräknas ur New Obs Fit SE Fit 95.0% CI 95.0% PI ( , 36717) ( 1489, 76564) XX ˆy 0 SE yˆ 0 s "Distance value" SE Fit är standardavvikelsen för punktskattningen ŷ 0 31
32 Får vi någon ytterligare information från prognosen? Predicted Values for New Observations New Obs Fit SE Fit 95.0% CI 95.0% PI ( , 36717) ( 1489, 76564) XX X denotes a row with X values away from the center XX denotes a row with very extreme X values Varning för att den typ av fastighet vi valt har extrema värden på x. Vi kan endast göra tillförlitliga prognoser på fastigheter där vi har liknande fastigheter med i ursprungliga datamaterialet. 3
33 Om vi t.ex bara har bostadsytan som förklarande variabel: Prediktioner utanför området där vi har observationer är inte tillförlitliga Regression Plot Price = Area S = R-Sq = 48.6 % R-Sq(adj) = 48. % Price Regression 95% CI Area
34 Pris mot bostadsyta Price Area Få observation med bostadsyta 3000 ft eller större, men ändå väl inom området där vi har observation 34
35 Pris mot antal rum Price Rooms 13 35
36 Vad är då problemet? pris area rooms Om vi tittar på datamaterialet så ser vi att de fastigheter som ingår och har exakt 6 rum har en bostadsyta mellan 1008 och 1900 ft. Det är alltså kombinationen 3000 ft och 6 rum som är extrem och vi måste fundera över om det är rimligt att anta att modellen är giltig även för denna typ av fastighet
37 Kap 5, 5,3: Residualanalys För att kunna ta resultaten av regressionsanalysen på allvar, måste vi undersöka om regressionsantagandena är uppfyllda. Har residualerna en konstant varians? Är residualerna normalfördelade? Är residualerna oberoende? Är alla samband linjära? Saknas någon förklarande variabel? 37
38 Har residualerna en konstant varians? Plotta residualerna mot anpassade värden (residuals vs fits) Är residualerna normalfördelade? Histogram av residualerna Normalfördelningsplot av residualerna (Normal probability plot) Är residualerna oberoende? Plotta residualerna i observationsordning (residuals vs order). Är alla samband linjära? Plotta residualerna mot enskilda förklarande variabler (Residuals vs the variables) 38
39 39
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data
Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler
732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet
732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Regressions- och Tidsserieanalys - F4
Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1
10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Multipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Exempel 1 på multipelregression
Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 83 3 (tåg) 9 3 (tåg) 93 (flyg) 97 7 (flyg) 9 (flyg) 99 (raket) Fitted Line Plot Hastighet
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Enkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B
Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en
Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,
a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B
Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så
Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.
y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader
Laboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
Exempel 1 på multipelregression
Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet
732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
TENTAMEN I STATISTIK B,
732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen
732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland
Skrivning i ekonometri lördagen den 29 mars 2008
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB, Ekonometri Skrivning i ekonometri lördagen den 9 mars 8.Vi vill undersöka hur variationen i antal arbetande timmar för gifta kvinnor i Michigan
Föreläsning 4. Kap 5,1-5,3
Föreläsning 4 Kap 5,1-5,3 Multikolinjäritetsproblem De förklarande variablerna kan vara oberoende (korrelerade) av varann men det är inte så vanligt. Ofta är de korrelerade, och det är helt ok men beroendet
TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA
Skrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
Kvadratisk regression, forts.
Kvadratisk regression, forts. Vi fortsätter med materialet om fastigheter. Tidigare föreslog vi som en tänkbar modell y 0 + 3 x 3 + 5 x 3 2 + Vari ligger tanken att just använda en kvadratisk term? Det
Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..
TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad
D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Skrivning i ekonometri lördagen den 15 januari 2005
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:3 Skrivning i ekonometri lördagen den 15 januari 5 1. Vi vill undersöka hur variationen i försäljningspris = price för hus i en liten stad
Föreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Skrivning i ekonometri lördagen den 25 augusti 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA
I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
Tentamen i matematisk statistik
Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2017-12-08, 8-12 Bertil Wegmann
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
För betyget GODKÄND krävs preliminärt minst 28 poäng. För betyget VÄL GOD- KÄND krävs preliminärt minst 43 poäng.
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson Skriftlig hemtentamen i Fortsättningskurs i statistik, moment 1, Statistisk Teori, poäng. Deltentamen 2: Regressionsanalys Måndagen den
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:
Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik MSTA16, Statistik för tekniska fysiker A Peter Anton TENTAMEN 2004-08-23 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistik för tekniska
Datorövning 2 Multipel regressionsanalys, del 1
Datorövning 2 Multipel regressionsanalys, del 1 Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. analysera data enligt en multipel regressionsmodell
STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistiska metoder SDA III, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2013-08-27 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?
Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten
Följande resultat erhålls (enhet: 1000psi):
Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.
Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.
Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas
Regressions- och Tidsserieanalys - F5
Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS,
TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, 204-0-3 Skrivtid: kl 8-2 Hjälpmedel: Räknedosa. Bowerman, B.J., O'Connell, R, Koehler, A.: Forecasting, Time Series and Regression. 4th ed. Duxbury, 2005 som
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
Tentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
F19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Datorövning 1 Enkel linjär regressionsanalys
Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband
1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.
Räkneövning 3 Variansanalys
Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras
Tentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2015-08-25 Tentamen Tillämpad statistik A5 (15hp) 2015-08-25 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
LABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistik-programmet
Föreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann
Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde
1. Man tror sig veta att en viss variabel, y, i genomsnitt beror av en annan variabel, x, enligt sambandet:
LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Extra övningsuppgifter 1. Man tror sig veta att en
F11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2011-03-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Erland
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen
Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift
Tentamen i matematisk statistik
Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-01-16 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: A. Jonsson, M. Shykula,
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-10-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: A. Jonsson, M. Shykula,
LABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik, LP1, HT 2015, Adam Jonsson LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i enkel regressionsanalys
D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga