732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, IDA, Linköpings universitet

Storlek: px
Starta visningen från sidan:

Download "732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet"

Transkript

1 732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

2 Kap , multipel linjär regressionsanalys y = µ y x1,x 2,...,x k + ɛ = β 0 + β 1 x 1 + β 2 x β k x k + ɛ I stället för en förklarande variabel kan vi inkludera era. Det är dock viktigt att inte inkludera variabler som inte har någon eller endast marginell betydelse för den beroende variabeln y. Återigen inkluderas en felterm ɛ i modellen, som står för den del av variationen i y som inte kan förklaras med hjälp av regressionsmodellen. Enligt modellantagandena ska följande egenskaper vara uppfyllda: 1. För varje kombination av värden x 1, x 2,..., x k är medelvärdet för värdena på feltermen noll. 2. Konstant varians. För varje kombination av värden x 1, x 2,..., x k har värdena på feltermen konstant varians. Denna varians kallas för σ Normalf ördelning. För varje kombination av värden x 1, x 2,..., x k följer värdena på feltermen en normalfördelning. 4. Oberoende. Alla värden på feltermen är statistiskt oberoende av alla andra värden på feltermen. ɛ N (0, σ) Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

3 Minstakvadratskattningar för multipel linjär regression Även i multipel linjär regression används minstakvadratmetoden för att hitta skattningar på parametrarna β 0, β 1, β 2,..., β k, och det som ska minimeras är: SSE = (y i ŷ i ) 2 = (y i (b 0 + b 1 x 1 + b 2 x b k x k )) 2 SSE brukar även kallas för den oförklarade variationen. Formlerna för att skatta regressionsparametrarna blir väldigt omständiga, så därför förlitar vi oss till statistiska programpaket för detta. Statistiska programpaket beräknar även dessa kvadratsummor: Total variation i y = SST = (y i ȳ) 2 F örklarad variation i y = SSR = (ŷ i ȳ) 2 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

4 Kap. 4.4, F-testet (the overall F-test) F-testet testar om den linjära regressionsmodellen är signikant eller inte. Om vi bara har en förklarande variabel är det samma som att testa om parametern till denna variabel är signikant skild från noll. Om vi har era förklarande variabler används dessa hypoteser: H 0 : β 1 = β 2 = = β k = 0 H a : åtminstone någon av β 1, β 2,..., β k är inte lika med noll Testvariabel: SSR/k F = SSE / (n k 1) = MSR MSE, där k är antalet förklarande variabler i modellen. Förkasta H 0 på signikansnivån α om F > F [α],k,n k 1 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

5 Kap. 4.5, t-testet Om F-testet är signikant innebär det att minst en förklaringsvariabel signikant påverkar den beroende variabeln y. Det är då intressant att undersöka vilken/vilka förklaringsvariabler som påverkar y signikant. Detta görs med hjälp av enskilda t-test för varje variabel j: Testvariabel: H 0 : β j = 0 H a : β j = 0 t = b j s bj Förkasta H 0 på signikansnivån α om t > t [α/2],n k 1 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

6 Exempel Följande datamaterial innehåller uppgifter om 150 slumpmässigt valda fastigheter i USA. Column Name Count Description Variabel Översättning C1 Price 150 Price y pris C2 Area 150 Area in square feet x 1 bostadsyta C3 Acres 150 Acres x 2 tomtyta C4 Rooms 150 Number of rooms x 3 antal rum C5 Baths 150 Number of baths x 4 antal badrum Källa: MTBWIN/Student12/HOMES.MTW Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

7 Spridningsdiagram (scatterplot) Pris mot bostadsyta: Scatterplot of Price vs Area Price Area Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

8 Spridningsdiagram (scatterplot) Pris mot tomtyta: Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

9 Spridningsdiagram (scatterplot) Pris mot antal rum: Scatterplot of Price vs Rooms Price Rooms Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

10 Spridningsdiagram (scatterplot) Pris mot antal badrum: Scatterplot of Price vs Baths Price ,0 1,5 2,0 2,5 Baths 3,0 3,5 4,0 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

11 Exempel, regressionsmodell Vi börjar med en modell som inte inkluderar alla förklarande variabler, utan endast de som verkar viktigast: bostadsyta och antal rum. Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

12 Exempel, skattad regressionsmodell från Minitab Regression Analysis: Price versus Area; Rooms Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression 2 1,25273E ,38 0,000 Area ,78 0,000 Rooms ,00 0,962 Error 147 1,32715E Lack-of-Fit 122 1,07866E ,89 0,673 Pure Error Total 149 2,57989E+11 Model Summary S R-sq R-sq(adj) R-sq(pred) 30047,0 48,56% 47,86% 45,43% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant ,03 0,000 Area 49,67 7,51 6,62 0,000 3,21 Rooms ,05 0,962 3,21 Regression Equation Price = ,67 Area Rooms Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

13 Förklaringsgraden R 2 Vi kommer ihåg kvadratsummorna: SST = Total variation i y SSR = Förklarad variation i y SSE = Oförklarad variation i y Med hjälp av dessa kan förklaringsgraden beräknas på samma sätt som för enkel linjär regression: R 2 = SSR SST Förklaringsgraden beskriver hur stor andel av den totala variationen i den beroende variabeln y som kan förklaras med hjälp av de förklarande variablerna i regressionsmodellen. Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

14 Justerad förklaringsgrad R 2 När man anpassar en regressionsmodell har man oftast två mål: 1) att hitta en modell som beskriver datamaterialet så bra som möjligt (de anpassade värdena ŷ från regressionsmodellen ska ligga nära de faktiska observationerna y.) 2) att hitta en modell som kan göra bra prognoser för nya observationer, d.v.s. göra bra punktprediktioner. Genom att inkludera er och er förklarande variabler i regressionsmodellen kan man ofta få en bättre och bättre anpassning till datamaterialet. Men, detta till bekostnad på att prognoserna för nya observationer blir ofta sämre (överanpassning). Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

15 Justerad förklaringsgrad R 2 Förklaringsgraden R 2 ökar alltid då man lägger till er förklarande variabler. Den justerade förklaringsgraden R 2 ökar inte alltid om man lägger till er förklarande variabler, eftersom denna innehåller en korrektion för antalet förklarande variabler k och antalet observationer n i modellen. Den justerade förklaringsgraden beräknas som R 2 = ( R 2 k n 1 ) ( n 1 n k 1 ) Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

16 Exempel, regressionsmodell Vi återgår till exemplet med fastigheterna med bostadsyta och antal rum som förklarande variabler i regressionsmodellen. Regression Analysis: Price versus Area; Rooms Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression 2 1,25273E ,38 0,000 Area ,78 0,000 Rooms ,00 0,962 Error 147 1,32715E Lack-of-Fit 122 1,07866E ,89 0,673 Pure Error Total 149 2,57989E+11 Model Summary S R-sq R-sq(adj) R-sq(pred) 30047,0 48,56% 47,86% 45,43% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant ,03 0,000 Area 49,67 7,51 6,62 0,000 3,21 Rooms ,05 0,962 3,21 Regression Equation Price = ,67 Area Rooms Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

17 Exempel, regressionsmodell Ett 100(1 α)% kondensintervall för medelvärdet av y och ett 100(1 α)% prognosintervall för ett enskilt värde på y beräknas på liknande sätt som för den enkla linjära regressionsmodellen: Konfidensintervall : [ ŷ ± t [α/2],(n k 1) s ] Distance value Prognosintervall : [ ŷ ± t [α/2],(n k 1) s ] 1 + Distance value Men, Distance value kan inte beräknas lika enkelt som i fallet enkel linjär regression. Däremot kan man ta den direkt från datorutskriften i Minitab. Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

18 Exempel, kondens- och prediktionsintervall från Minitab Nu vill vi göra en prognos (prediktion) för priset på en fastighet med bostadsytan 3000 square feet och antal rum lika med 6 med tillhörande 95% prognosintervall (prediktionsintervall) i MINITAB. Prediction for Price Regression Equation Price = ,67 Area Rooms Variable Setting Area 3000 Rooms 6 Fit SE Fit 95% CI 95% PI ,7 (188076; ) (148229; ) XX XX denotes an extremely unusual point relative to predictor levels used to fit the model. Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

19 Exempel, varning för extrema värden från Minitab Varning för att den typ av fastighet vi valt har extrema värden på förklaringsvariablerna. Vi kan endast göra tillförlitliga prognoser på fastigheter där vi har liknande fastigheter med i ursprungliga datamaterialet. Bostadsyta med 3000 feet square är inte särskilt ovanligt i datamaterialet. Fastighet med 6 stycken rum är inte alls ovanligt i datamaterialet. Vad är då problemet? Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

20 Exempel, varning för extrema värden från Minitab Om vi tittar på datamaterialet så ser vi att de fastigheter som ingår och har exakt 6 rum har en bostadsyta mellan 1008 och 1900 square feet. Det är alltså kombinationen 3000 square feet och 6 stycken rum som är extrem i datamaterialet. Vi måste därför ta ställning till om det är rimligt att anta att modellen är giltig även för denna typ av fastighet. Annars måste vi ta bort denna extrema observation från datamaterialet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

21 Kap. 4.7, kvadratisk regressionsmodell Om sambandet till en variabel inte är linjärt så kan vi även inkludera en kvadratisk term i regressionsmodellen. Exempel, fastighetsdatat: antag att vi misstänker att antalet rum inte påverkar priset på fastigheter i USA på ett linjärt sätt. Därför lägger vi till variabeln antalet rum i kvadrat för att testa om ett krökt samband är lämpligare för regressionsmodellen. Alltså vill vi undersöka hur variablerna x 3 = antal rum och x 5 = x 2 3 förklarar variationen i den beroende variabeln y = pris. Som jämförelse börjar vi dock först med att skatta en enkel linjär regressionsmodell med endast antal rum som förklarande variabel. Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

22 Exempel, enkel linjär regressionsmodell Vi börjar med en enkel linjär regressionsmodell utan kvadratisk term. y = β 0 + β 3 x 3 + ɛ Regression Analysis: Price versus Rooms Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression ,68 0,000 Rooms ,68 0,000 Error 148 1,72244E Lack-of-Fit ,26 0,271 Pure Error 140 1,60701E Total 149 2,57989E+11 Model Summary S R-sq R-sq(adj) R-sq(pred) 34114,6 33,24% 32,78% 31,33% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant ,76 0,007 Rooms ,58 0,000 1,00 Regression Equation Price = Rooms Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

23 Exempel, enkel linjär regressionsmodell Fitted Line Plot Price = Rooms S 34114,6 R-Sq 33,2% R-Sq(adj) 32,8% Price Rooms Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

24 Exempel, kvadratisk regressionsmodell Multipel linjär regressionsmodell med kvadratisk term. Vi behåller originalvariabeln x 3 för att göra modellen mer exibel. y = β 0 + β 3 x 3 + β 5 x ɛ Regression Analysis: Price versus Rooms; RoomsSquared Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression ,55 0,000 Rooms ,34 0,000 RoomsSquared ,29 0,023 Error 147 1,66266E Lack-of-Fit ,69 0,678 Pure Error 140 1,60701E Total 149 2,57989E+11 Model Summary S R-sq R-sq(adj) R-sq(pred) 33631,2 35,55% 34,68% 33,31% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant ,18 0,240 Rooms ,79 0,000 32,64 RoomsSquared ,30 0,023 32,64 Regression Equation Price = Rooms RoomsSquared Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

25 Exempel, kvadratisk regressionsmodell Fitted Line Plot Price = Rooms Rooms^ S 33631,2 R-Sq 35,6% R-Sq(adj) 34,7% Price Rooms Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

26 Exempel, kvadratisk regressionsmodell Kvadratisk regression ger dock svårtolkade parametrar. I modellen ŷ = b 0 + b 3 x 3 kan vi säga att priset för en fastighet förväntas öka med b 3 USD för varje ytterligare rum. I modellen ŷ = b 0 + b 3 x 3 + b 5 x 5 förväntas priset för fastigheten öka för varje ytterligare rum, men bara upp till ett visst antal rum, sen stabiliseras priset. Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, / 26

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

10.1 Enkel linjär regression

10.1 Enkel linjär regression Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann

Läs mer

Skrivning i ekonometri lördagen den 25 augusti 2007

Skrivning i ekonometri lördagen den 25 augusti 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA

Läs mer

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab. Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2017-12-08, 8-12 Bertil Wegmann

Läs mer

Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin

Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin Inledning I denna miniundersökning analyseras hur studietiden är relaterad till attityder

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet

Läs mer

F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data

F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler

Läs mer

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare

Läs mer

Kvalster. Korrelation och regression: lineära modeller för bivariata samband. Spridningsdiagram. Bivariata samband

Kvalster. Korrelation och regression: lineära modeller för bivariata samband. Spridningsdiagram. Bivariata samband Kvalster och regression: lineära modeller för bivariata samband Matematik och statistik för biologer, 10 hp En viss sorts kvalster (Demodex folliculorum) trivs bra i människors hårsäckar. Enligt en studie

Läs mer

Föreläsning 14: Försöksplanering

Föreläsning 14: Försöksplanering Föreläsning 14: Försöksplanering Matematisk statistik Chalmers University of Technology Oktober 14, 2015 Modellbeskrivning Vi har gjort mätningar av en responsvariabel Y för fixerade värden på förklarande

Läs mer

Figur 1: R e g r e s s i o n A n a l y s i s : S k u l d v e r s u s t. The r e g r e s s i o n e q u a t i o n i s S k u l d = 2,94 0,861 t

Figur 1: R e g r e s s i o n A n a l y s i s : S k u l d v e r s u s t. The r e g r e s s i o n e q u a t i o n i s S k u l d = 2,94 0,861 t 1. Ned i avgrunden (12p). Greklands ekonomi har minst sagt varit på tapeten det senaste året på grund av landets problem med statsskulden. Vill man ha aktuella data för EU-länderna så är Eurostats 1 databaser

Läs mer

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka. y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader

Läs mer

Multipel Regressionsmodellen

Multipel Regressionsmodellen Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann

Läs mer

a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!

a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1! LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Punktskattning och kondensintervall Innehåll 1 Punktskattning och kondensintervall Population Punktskattning och kondensintervall Vi har en population vars någon mätbar egenskap X vi är intresserade

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 83 3 (tåg) 9 3 (tåg) 93 (flyg) 97 7 (flyg) 9 (flyg) 99 (raket) Fitted Line Plot Hastighet

Läs mer

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar: Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt

Läs mer

732G71 Statistik B. Föreläsning 6. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 15

732G71 Statistik B. Föreläsning 6. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 15 732G71 Statistik B Föreläsning 6 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 15 Efterfrågeanalys Metoder för att studera sambandet mellan efterfrågan på

Läs mer

TENTAMEN I STATISTIK B,

TENTAMEN I STATISTIK B, 732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen

Läs mer

Laboration 2 multipel linjär regression

Laboration 2 multipel linjär regression Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera

Läs mer

Laboration 3: Modellval i multipel regression

Laboration 3: Modellval i multipel regression Laboration 3: Modellval i multipel regression I denna datorövning skall ni använda MINITAB för att 1. jämföra olika anpassade regressionsmodeller med hjälp av den justerade förklaringsgraden 2. arbeta

Läs mer

Skrivning i ekonometri torsdagen den 8 februari 2007

Skrivning i ekonometri torsdagen den 8 februari 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är

Läs mer

Regression med kvalitativa variabler. Jesper Rydén

Regression med kvalitativa variabler. Jesper Rydén Regression med kvalitativa variabler Jesper Rydén 1 2 UPPSALA UNIVERSITET Matematiska institutionen Jesper Rydén Matematisk statistik 1MS026 Tillämpad statistik vt 2013 REGRESSION MED KVALITATIVA VARIABLER

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5

Läs mer

Jesper Rydén. Matematiska institutionen, Uppsala universitet jesper@math.uu.se. Tillämpad statistik för STS vt 2014

Jesper Rydén. Matematiska institutionen, Uppsala universitet jesper@math.uu.se. Tillämpad statistik för STS vt 2014 Föreläsning 8. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 Exempel: Pris och boyta Samband mellan två eller flera variabler? Spridningsdiagram

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

Skrivning i ekonometri lördagen den 15 januari 2005

Skrivning i ekonometri lördagen den 15 januari 2005 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:3 Skrivning i ekonometri lördagen den 15 januari 5 1. Vi vill undersöka hur variationen i försäljningspris = price för hus i en liten stad

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Räkneövning 3 Variansanalys

Räkneövning 3 Variansanalys Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet. Laboration 4. Regressionsanalys

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet. Laboration 4. Regressionsanalys Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet Laboration 4 Regressionsanalys HT 2007 2 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns i SPSS vad

Läs mer

Skrivning i ekonometri lördagen den 29 mars 2008

Skrivning i ekonometri lördagen den 29 mars 2008 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB, Ekonometri Skrivning i ekonometri lördagen den 9 mars 8.Vi vill undersöka hur variationen i antal arbetande timmar för gifta kvinnor i Michigan

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

För betyget GODKÄND krävs preliminärt minst 28 poäng. För betyget VÄL GOD- KÄND krävs preliminärt minst 43 poäng.

För betyget GODKÄND krävs preliminärt minst 28 poäng. För betyget VÄL GOD- KÄND krävs preliminärt minst 43 poäng. STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson Skriftlig hemtentamen i Fortsättningskurs i statistik, moment 1, Statistisk Teori, poäng. Deltentamen 2: Regressionsanalys Måndagen den

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS,

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, 204-0-3 Skrivtid: kl 8-2 Hjälpmedel: Räknedosa. Bowerman, B.J., O'Connell, R, Koehler, A.: Forecasting, Time Series and Regression. 4th ed. Duxbury, 2005 som

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2015-01-13 Tentamen Tillämpad statistik A5 (15hp) 2015-01-13 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

Statistisk undersökningsmetodik (Pol. kand.)

Statistisk undersökningsmetodik (Pol. kand.) TENTAMEN Tentamensdatum 2008-10-02 Statistisk undersökningsmetodik (Pol. kand.) Namn:.. Personnr:.. Tentakod: Obs! Var noga med att skriva din tentakod på varje lösningsblad som du lämnar in. Skrivtid

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413.

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Peter Anton TENTAMEN 2005-12-16 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer (ID),

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

8.1 General factorial experiments

8.1 General factorial experiments Exempel: Vid ett tillfälle ville man på ett laboratorium jämföra fyra olika metoder att bestämma kopparhalten i malmprover. Man är även intresserad av hur laboratoriets tre laboranter genomför sina uppgifter.

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Regressions- och Tidsserieanalys - F5

Regressions- och Tidsserieanalys - F5 Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?

Läs mer

Datorövning 2 Statistik med Excel (Office 2003, engelska)

Datorövning 2 Statistik med Excel (Office 2003, engelska) Datorövning 2 Statistik med Excel (Office 2003, engelska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen

HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik, ANd HSTA72 REGRESSIONS- OCH TIDSSERIEANALYS, 5p Ekonomprogrammet, t2, Vt 06 Tentamen REGRESSIONS- OCH TIDSSERIEANALYS, 5 P TENTAMEN LÖRDAGEN

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

Kvadratisk regression, forts.

Kvadratisk regression, forts. Kvadratisk regression, forts. Vi fortsätter med materialet om fastigheter. Tidigare föreslog vi som en tänkbar modell y 0 + 3 x 3 + 5 x 3 2 + Vari ligger tanken att just använda en kvadratisk term? Det

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

Uppgift a b c d e f (vet ej) Poäng

Uppgift a b c d e f (vet ej) Poäng TENTAMEN: Statistisk modellering för I3, TMS161, lördagen den 22 Oktober kl 8.30-11.30 på V. Jour: John Gustafsson, ankn. 5316. Hjälpmedel: På hemsidan tillgänglig ordlista och formelsamling med tabeller,

Läs mer

1. Frekvensfunktionen nedan är given. (3p)

1. Frekvensfunktionen nedan är given. (3p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall

Läs mer

HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem

HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem Problem 1 (6p) En undersökning utfördes med målet att besvara frågan Hur stor andel av den vuxna befolkningen i Sverige äger ett skjutvapen?.

Läs mer

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts. Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2015-08-25 Tentamen Tillämpad statistik A5 (15hp) 2015-08-25 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann

Läs mer

Datorövning 2 Multipel regressionsanalys, del 1

Datorövning 2 Multipel regressionsanalys, del 1 Datorövning 2 Multipel regressionsanalys, del 1 Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. analysera data enligt en multipel regressionsmodell

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde

Läs mer

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistiska metoder SDA III, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik

Läs mer

1. Man tror sig veta att en viss variabel, y, i genomsnitt beror av en annan variabel, x, enligt sambandet:

1. Man tror sig veta att en viss variabel, y, i genomsnitt beror av en annan variabel, x, enligt sambandet: LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Extra övningsuppgifter 1. Man tror sig veta att en

Läs mer