Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik för STS vt 2014

Storlek: px
Starta visningen från sidan:

Download "Jesper Rydén. Matematiska institutionen, Uppsala universitet jesper@math.uu.se. Tillämpad statistik för STS vt 2014"

Transkript

1 Föreläsning 8. Jesper Rydén Matematiska institutionen, Uppsala universitet Tillämpad statistik för STS vt 2014

2 Exempel: Pris och boyta Samband mellan två eller flera variabler? Spridningsdiagram kan indikera samband Matematisk/stokastisk modell?

3 Enkel linjär regression Observationer y 1,..., y n av variablerna Y 1,..., Y n, antas oberoende med gemensam varians σ 2. Väntevärdet µ i = E[Y i ] beror på givna storheter. Enkel linjär regression: µ i = α + β x i, i = 1,..., n Linjär syftar på uttryckets linjäritet i parametrarna (α, β). Även t.ex. µ i = α + β 1 x i + β 2 x 2 i + β 3 sin x i innebär (multipel) linjär regression.

4 Modell Låt x 1,..., x n vara givna (icke slumpmässiga) storheter. Antag vidare att Y 1,..., Y n är oberoende slumpvariabler med gemensam varians σ 2 och att µ i = α + βx i. Vi har då en enkel linjär regressionsmodell. Storheten x kallas regressor eller förklarande variabel eller oberoende variabel. Slumpvariabeln Y (eller dess observerade värde y) kallas för responsvariabel eller beroende variabel. Linjen för väntevärdet y = α + βx kallas för den teoretiska regressionslinjen, α benämnes intercept och β lutningskoefficient.

5 Enkel linjär regression Minstakvadratmetoden används för att finna punktskattningar. Sök de parametrar som minimerar Q = n (y i α βx i ) 2. i=1 Man finner punktskattningarna β = n i=1 y ix i n xȳ n i=1 x 2 i n x 2, α = ȳ β x, där ȳ = n 1 y i och x = n 1 x i. Skattad modell: med residualer y i = α + β x i e i = y i y i

6 Idé: Minimera kvadratsumma

7 Historisk kommentar: MK-metoden The method of least squares is the automobile of modern statistical analysis: despite its limitations, occasional accidents, and incidental pollution, it and its numerous variations, extensions, and related conveyances carry the bulk of statistical analyses, and are known and valued by nearly all. But there has been some dispute, historically, as who was the Henry Ford of statistics. SM Stigler (1981)

8 En vetenskaplig dispyt Adrien-Marie Legendre ( ) Carl Friedrich Gauss ( ) Publikation om metoden Publikation om metoden 1809.

9 J.D. Forbes experiment Estimate altitude above sea level from measurements of boiling point of water. Motivation: Difficulties in transportation of fragile barometers Barometric pressure (inches Hg) Boiling point (F)

10 Residuals (Forbes data) Residual value Residual number

11 Residuals (Forbes data) 5 Normal probability plot 4 3 Quantile Data

12 Varning: Orsak/verkan Beakta variablers inverkan! Datas karaktär: tvärsnittsdata (insamlat vid en given tidpunkt) eller longitudinella (insamlade över tid). Datainsamling? Experiment, enkäter; samhällsvetenskap/naturvetenskap.

13 Förklaringsgrad: Enkel linjär regression Förklaringsgrad: R 2 = 1 n i=1 e2 i n i=1 (y i ȳ) 2 Det gäller alltid 0 R 2 1. Ju närmare R 2 = 1, desto bättre anpassning För enkel linjär regression gäller R 2 = r 2 där r 2 är den kvadrerade skattade korrelationskoefficienten.

14 Enkel linjär regression: prediktion av väntevärde Givet x = x 0, prediktera värdet av beroende variabeln y genom att använda linjen: y 0 = α + β x 0 Man finner E[Y0 ] = α + βx 0 [ 1 V[Y0 ] = σ 2 n + (x 0 x) 2 ] n i=1 (x i x) 2

15 Enkel linjär regression: prediktionsintervall En framtida observation y 0 svarande till x 0 ; vi är intresserade av differensen y 0 y 0. E[Y 0 Y 0 ] = 0 V[Y 0 Y0 ] = V[Y 0 ] + V[Y0 ] [ = σ n + (x 0 x) 2 ] n i=1 (x i x) 2

16 Forbes data 32 Barometric pressure (inches Hg) Boiling point (F)

17 Regression med fel i bägge variablerna * EIV-modell (Error In Variables). Givet: observationspar (x 1, y 1 ),..., (x n, y n ). x i = ξ i + δ i y i = β 0 + β 1 ξ i + ɛ i där ξ i är okända värden och δ i samt ɛ i är oberoende fel med varianser σ 2 δ resp. σ2 ɛ. MK- och ML-skattningar kan härledas.

18 Multipel regression Beroende variabel (responsvariabel): y Oberoende variabler (förklarande variabler, regressorvariabler, carriers): x 1, x 2,..., x k Matematiskt samband: y = f (x 1, x 2,..., x k ) där f () är en funktion. Linjär modell Exempel, p = 2: y = β 0 + β 1 x 1 + β 2 x 2 + ɛ OBS! Linjäriteten avser parametrarna β i. Även y = β 0 + β 1 x 1 + β 2 x 2 + β 11 x β 22 x β 12 x 1 x 2 + ɛ är att betrakta som en linjär modell.

19 Responsytor, exempel 1 y = x x x 1 x 2

20 Responsytor, exempel 2 y = x x 2 + 8x 1 x 2

21 Multipel regression: matrisnotation Matrisnotation: där och y = y 1 y 2. y n y = Xβ + ɛ 1 x 11 x x ik, X = 1 x 21 x x 2k x n1 x n2... x nk β = β 0 β 1. β k ɛ 1, ɛ = ɛ 2. ɛ n

22 Enkel linjär regression: matrisnotation Matrisnotation: där och y = β = y 1 y 2. y n y = Xβ + ɛ 1 x 1 1 x 2, X =.. 1 x n [ β0 β 1 ɛ 1 ] ɛ 2, ɛ =. ɛ n

23 MK-metoden för estimering av parametrar Miniminera L(β) = (y Xβ) T (y Xβ) vilket leder till normalekvationerna X T X β = X T y och MK-skattningen β = (X T X) 1 X T y Anmärkning. Vid numerisk behandling används ofta en QR-faktorisering av matrisen X.

24 Anpassade värden och hattmatris Anpassade värden ŷ ges av ŷ = X ˆβ = Hy där H = X(X T X) 1 X T ofta kallas hattmatrisen. Residualer: e = y ŷ

25 Mer om skattningar Egenskaper hos skattningen ˆβ Väntevärdesriktig skattning med Cov(ˆβ) = σ 2 (X T X) 1 Skattning av σ 2 Inför residualkvadratsumman Q 0 = SS E = e T e = n (y i ŷ i ) 2 i=1 En väntevärdesriktig skattning ges av ˆσ 2 = Q 0 n k 1 och vidare gäller 1 σ 2 Q 0 χ 2 (n k 1) (följer av räkneregler för linjärkomb. av stok. vektor)

26 Spjälkning av kvadratsummor Man kan visa att n (y i ȳ) 2 = i=1 n n (ŷ i ȳ) 2 + (y i ŷ i ) 2 i=1 i=1 Tolkning: Total variation = Förklarad variation + Oförklarad variation Vanlig engelsk beteckning: SS T = SS R + SS E Kompendium: Q TOT = Q REGR + Q RES

27 Förklaringsgrad Förklaringsgrad (coefficient of multiple determination): R 2 = SS R SS T = 1 SS E SS T Ju fler förklarande variabler, desto högre värde på R 2. Emellanåt används dessutom en besläktad storhet. Justerad förklaringsgrad (adjusted R 2 statistic): R 2 adj = 1 SS E /(n k 1) SS R /(n 1) = 1 ( ) n 1 (1 R 2 ) n k 1

28 Statistisk analys: Test av regression Antag att ɛ i N(0, σ 2 ). Hypoteser: Teststorhet: H 0 : β 1 = β 2 = = β k = 0 H 1 : F 0 = β j 0 för minst ett j SS R /k SS E /(n k 1) Förkasta H 0 om F 0 > F α (n k 1). SS E = y T y ˆβ T X T y SS R = ˆβ T X T y ( n i=1 y i) 2 n

29 Test av enskilda parametrar Hypoteser: H 0 : β j = 0 mot H 1 : β j 0 Beteckna i matrisen (X T X) 1 elementen med c ij. Då gäller β j N(β j, σ 2 c jj ). Teststorhet: t 0 = ˆβ j 0 ˆσ 2 c jj Förkasta H 0 om t 0 > t α/2 (n k 1).

30 Konfidensintervall Ett 100(1 α) % konfidensintervall för β j, j = 0, 1,..., k, ges av ( ) ˆβ j t α/2 (n k 1) ˆσ 2 c jj, ˆβ j + t α/2 (n k 1) ˆσ 2 c jj Konfidensintervall för väntevärde vid x 0 : ( ) x T ˆβ 0 ± t α/2 (n k 1) ˆσ 2 x T0 (XT X) 1 x 0 Prediktionsintervall vid vid x 0 : ( ) x T ˆβ 0 ± t α/2 (n p) 1 + ˆσ 2 x T0 (XT X) 1 x 0

31 Exempel med R: Miljögifter och fiskar Studier av DDT-halten hos fiskarter utefter en flod i Alabama. En kemisk industri finns belägen längs floden. Totalt gjordes mätningar på 144 fiskar. De fem första observationerna: River Mile Species Length Weight DDT 1 FCM 5 CCATFISH FCM 5 CCATFISH FCM 5 CCATFISH FCM 5 CCATFISH FCM 5 CCATFISH

32 Exempel med R: Miljögifter och fiskar Antag att vi vill skatta parametrar i modellen y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + ɛ Responsvariabel: y =DDT Förklarande variabler: x 1 =Mile, x 2 =Length, x 3 =Weight Call: lm(formula = DDT Mile + Length + Weight, data = fishes) Estimate Std. Error t value Pr(> t ) (Intercept) Mile Length Weight Residual standard error: on 140 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 3 and 140 DF, p-value:

33 Miljögifter och fiskar (a) Ange en skattning av standardavvikelsen σ för ɛ. Från R-utskriften finner vi direkt σ = (b) Ger data tillräckligt belägg för att dra slutsatsen att DDT-halten ökar med ökande längd (signifikansnivå 0.05)? Hypotestest: H 0 : β 2 = 0 H 1 : β 2 > 0 Från R-utskriften finner vi värde på teststorheten för t-test: t = Under antagande om normalfördelade residualer förkastas H 0 om t > t 0.05 (142). = 1.66, dvs. vi förkastar här H 0. Alternativt, studera motsvarande p-värde för aktuell variabel (ges i utskriften): p = /2 = Slutsats: Förkasta H 0 på nivån 0.05.

34 Miljögifter och fiskar (c) Beräkna ett 95% konfidensintervall för β 3. Tolka intervallet. Ett intervall ges av I β3 = [β 3 ± t (142)d[β 3] ] R-utskriften: β3. = och medelfelet d[β3 ] = Tabell eller dator ger t (142) = Intervallet ges av [ 0.11, ]. Tolkning: För varje grams ökning av fiskens vikt kan vi med 95% säkerhet slå fast att ökningen i DDT-halt ligger i intervallet [ 0.11, ], om övriga variabler i modellen, Mile och Length, hålls konstanta.

35 Miljögifter och fiskar (d) Testa regressionsmodellen på signifikansnivån Hypotestest: H 0 : β 1 = β 2 = β 3 = 0 H 1 : Minst ett β i 0 Detta kan testas med ett F-test, värdet på teststorheten kan utläsas: F = H 0 förkastas om F > F 0.05 (3, 140) = 2.67, dvs. i detta fall förkastas inte H 0. Motsvarande p-värde kan utläsas: p = ; förkasta inte H 0 på någon av de vanligast förekommande nivåerna. De förklarande variablerna förklarar inte tillräckligt bra responsvariabeln.

Regression med kvalitativa variabler. Jesper Rydén

Regression med kvalitativa variabler. Jesper Rydén Regression med kvalitativa variabler Jesper Rydén 1 2 UPPSALA UNIVERSITET Matematiska institutionen Jesper Rydén Matematisk statistik 1MS026 Tillämpad statistik vt 2013 REGRESSION MED KVALITATIVA VARIABLER

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet 732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys

Läs mer

Föreläsning 14: Försöksplanering

Föreläsning 14: Försöksplanering Föreläsning 14: Försöksplanering Matematisk statistik Chalmers University of Technology Oktober 14, 2015 Modellbeskrivning Vi har gjort mätningar av en responsvariabel Y för fixerade värden på förklarande

Läs mer

Kvalster. Korrelation och regression: lineära modeller för bivariata samband. Spridningsdiagram. Bivariata samband

Kvalster. Korrelation och regression: lineära modeller för bivariata samband. Spridningsdiagram. Bivariata samband Kvalster och regression: lineära modeller för bivariata samband Matematik och statistik för biologer, 10 hp En viss sorts kvalster (Demodex folliculorum) trivs bra i människors hårsäckar. Enligt en studie

Läs mer

Föreläsning 9: Hypotesprövning

Föreläsning 9: Hypotesprövning Föreläsning 9: Hypotesprövning Matematisk statistik David Bolin Chalmers University of Technology Maj 5, 2014 Statistik Stickprov Ett stickprov av storlek n är n oberoende observationer av en slumpvariabel

Läs mer

Extrauppgifter. Uppgifter. 1. Den stokastiska variabeln Y t(10). Bestäm c så att P ( c < Y < c) = 0.95.

Extrauppgifter. Uppgifter. 1. Den stokastiska variabeln Y t(10). Bestäm c så att P ( c < Y < c) = 0.95. Extrauppgifter Uppgifter 1. Den stokastiska variabeln Y t(10). Bestäm c så att P ( c < Y < c) = 0.95. 2. De stokastiska variablerna X och Y är oberoende och χ 2 (5) respektive χ 2 (7). (a) Bestäm a och

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Punktskattning och kondensintervall Innehåll 1 Punktskattning och kondensintervall Population Punktskattning och kondensintervall Vi har en population vars någon mätbar egenskap X vi är intresserade

Läs mer

10.1 Enkel linjär regression

10.1 Enkel linjär regression Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot

Läs mer

Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen?

Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen? Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001 1. Månadslönerna för 10 lärare vid en viss skola är 1 17 700 19 800 19 900 20 200 20 800 16 100 17 000 23 500 19 700 21 100 Beräkna medelvärdet,

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Fredagen

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Finansiell statistik. Multipel regression. 4 maj 2011

Finansiell statistik. Multipel regression. 4 maj 2011 Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Uppgift 2 0 0.10 1 0.25 2 0.40 3 0.20 4 0.05

Uppgift 2 0 0.10 1 0.25 2 0.40 3 0.20 4 0.05 Uppgift 1 En grönsaksgrossist har utvecklat ett test för att kontrollera kvaliteten hos tomater. Efter att ha inspekterat ett urval från ett parti tomater, accepteras eller förkastas partiet. Med detta

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

F12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24

F12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24 1/24 F12 Regression Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/2 2013 2/24 Dagens föreläsning Linjära regressionsmodeller Stokastisk modell Linjeanpassning och skattningar

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Laboration 3: Enkel linjär regression och korrelationsanalys

Laboration 3: Enkel linjär regression och korrelationsanalys STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Summor av slumpvariabler

Summor av slumpvariabler 1/22 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 8/2 2013 2/22 Dagens föreläsning Väntevärde och varians Vanliga kontinuerliga fördelningar Parkeringsplatsproblemet

Läs mer

Resultatet läggs in i ladok senast 13 juni 2014.

Resultatet läggs in i ladok senast 13 juni 2014. Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar

Läs mer

Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14

Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14 STOCKHOLMS UNIVERSITET MT 5001 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 13 januari 2014 Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14 Examinator: Martin Sköld, tel.

Läs mer

Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin

Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin Inledning I denna miniundersökning analyseras hur studietiden är relaterad till attityder

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F12: Tillförlitlighet och säkerhetsindex Cornell Styrka Säkerhetsindex Ett säkerhetsindex, b: Är ett mått på ett systems tillförlitlighet. Är ett grövre mått än felsannolikheten P f. Används när P f inte

Läs mer

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 17 februari

Tentamen för kursen. Linjära statistiska modeller. 17 februari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

TAMS65 - Seminarium 4 Regressionsanalys

TAMS65 - Seminarium 4 Regressionsanalys TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Hjälpmedel:'Valfri'räknare,'egenhändigt'handskriven'formelsamling'(4''A4Esidor'på'2'blad)' och'till'skrivningen'medhörande'tabeller.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Regressionsanalys av huspriser i Vaxholm

Regressionsanalys av huspriser i Vaxholm Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se

Läs mer

TT091A, TVJ22A, NVJA02 By, Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 By, Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 By, Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-01-11

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Matematisk statistik, Föreläsning 5

Matematisk statistik, Föreläsning 5 Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15 1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla

Läs mer

Multipel Regressionsmodellen

Multipel Regressionsmodellen Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

parametriska test Mätning Ordinalskala: Nominalskala:

parametriska test Mätning Ordinalskala: Nominalskala: Icke- parametriska test Icke- parametriska test En avgörande skillnad mellan icke-parametriska och s.k. parametriska test, som t.ex. t-test, är att de icke-parametriska testen kräver färre antaganden Icke-parametriska

Läs mer

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413.

OBS! Skriv e-postadress på tentan om du vill ha resultatet innan jul. Tentamensgenomgång måndagen den 9/1 2006 kl. 13.15 i MC413. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Peter Anton TENTAMEN 2005-12-16 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer (ID),

Läs mer

Multipel regression och Partiella korrelationer

Multipel regression och Partiella korrelationer Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare

Läs mer

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006 UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Anna Lindgren 14 december, 2015 Anna Lindgren anna@maths.lth.se FMSF20 F13 1/22 Linjär regression Vi har n st par av

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14 STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 23 maj 2013 Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14 Examinator: Gudrun Brattström,

Läs mer

1. Frekvensfunktionen nedan är given. (3p)

1. Frekvensfunktionen nedan är given. (3p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Mälardalens Högskola. Formelsamling. Statistik, grundkurs Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

Föreläsning 15, FMSF45 Multipel linjär regression

Föreläsning 15, FMSF45 Multipel linjär regression Föreläsning 15, FMSF45 Multipel linjär regression Stas Volkov 2017-11-28 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F15 1/23 Linjär regression Vi har n st par av mätvärden (x i, y i ), i = 1,..., n

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Lunds tekniska högskola Matematikcentrum Matematisk statistik

Lunds tekniska högskola Matematikcentrum Matematisk statistik Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS0: MATEMATISK STATISTIK AK FÖR V EXEMPEL PÅ DUGGAUPPGIFTER, AVSNITT SANNOLIKHETSTEORI UPPGIFTER Kortare uppgifter. På en arbetsplats skadas

Läs mer

oberoende av varandra så observationerna är

oberoende av varandra så observationerna är Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 1, 1-5-7 REGRESSION (repetition) Vi har mätningarna ( 1, 1 ),..., ( n, n

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.

En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1. En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

Laboration 2: Styrkefunktion samt Regression

Laboration 2: Styrkefunktion samt Regression Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens

Läs mer

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,

Läs mer

Möbiustransformationer.

Möbiustransformationer. 224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer