Laboration 3: Enkel linjär regression och korrelationsanalys
|
|
- Georg Lundström
- för 9 år sedan
- Visningar:
Transkript
1 STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer ni att använda enkel linjär regression och korrelationsanalys för att studera egenskaperna hos ett material bestående av bivariata data. Precis som i tidigare övningar kommer först en inledande beskrivning av hur dessa metoder ser ut i R, och sedan följer själva uppgifterna. Enkel linjär regression och korrelationsanalys i R Börja på liknande sätt som i tidigare laborationer med att skapa ett nytt underbibliotek för den här laborationen och flytta sedan dit genom kommandona $ mkdir statan3 $ cd statan3 Om ni måste avbryta laborationen så sparas samtliga variabler i detta bibliotek. När ni sedan vill återuppta arbetet så hoppa direkt till underbiblioteket genom $ cd statan3 och starta sedan R. Enkel linjär regression Enkel linjär regression hanteras i R av funktionen lm. Skriv >?lm för en detaljerad beskrivning av hur denna funktion är uppbyggd. Beskrivningen består av ganska mycket text, som kan vara svår att läsa i terminalfönstret, så ett smidigare sätt är att först skriva 1
2 > help.start() Då kommer webb-läsaren Mozilla att startas (om den inte redan har startats) och en hjälpsida för R öppnas. När man sedan skriver >?lm kommer hjälptexten att visas i webb-läsaren i stället för i terminalfönstret, vilket kan vara praktiskt. Detta är, som ni kan se, en väldigt kraftfull funktion som kan hantera betydligt mer komplicerade modeller än enkel linjär regression men i den här datorövningen kommer vi endast att använda den i det specialfallet. Det innebär bland annat att vi endast kommer att anropa den med ett enda argument, nämligen formula. Låt oss anta att bakgrundsvariablerna finns lagrade i variabeln x och responsvariablerna i variabeln y. En linjär regressionsanalys i R görs då med kommandona > modell <- lm(y ~ x) > summary(modell) Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) x e-05 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 8 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: 7.965e-05 Som ni ser ger kommandot summary en hel del information om modellen. Framförallt ges skattningar av parametrarna α (intercept) och β (lutningskoefficient) samt tvåsidiga test av hypoteserna H 0 : α = 0 och H 0 : β = 0. Kolumnen Pr(> t ) anger p-värdena för dessa test. Tyvärr finns inget enkelt sätt att få R att automtatiskt genomföra ensidiga test, men man kan enkelt få p-värden för ett ensidigt test genom att halvera p-värdet för motsvarande tvåsidiga test. Man får också skattningen av variansen s 2 som Residual standard error och förklaringsgraden R 2 som Multiple R-Squared. För att få residualerna (vilka behövs för att undersöka om förutsättningarna för modellen är uppfyllda) kan man enkelt skriva 2
3 > residual <- modell$residuals En residualplot fås nu med > plot(x,residual) > lines(c(min(x),max(x)),c(0,0),lty="dotted") Det andra kommandot ritar en prickad ( dotted ) linje längs nollan, vilket kan underlätta avläsning av en residualplot. Slutligen fås en normalfördelningsplot av residualerna på vanligt sätt enligt > qqnorm(residual) > qqline(residual) Korrelationsanalys Korrelationsanalys görs i R med funktionen cor.test. Skriv >?cor.test för en detaljerad beskrivning av hur den fungerar. Som ni ser kan man specificera om man vill ha ensidigt eller tvåsidigt test av hypotesen H 0 : ρ = 0 och konfidensgrad för approximativt konfidensintervall. Argumentet method anger om man vill skatta och testa Pearsons (den vanliga som gås igenom i avsnitt 6.4 och 9.4 i boken), Kendalls (ingår ej i kursen) eller Spearmans (gås igenom i 8.4.3) korrelationskoefficient. Uppgift 1: Jordens medeltemperatur I filen temperatur.txt på kursens hemsida finns data över avvikelsen av jordens medeltemperatur under perioden jämfört med genomsnittet för perioden Börja med att ladda ner filen till ert underbibliotek statan3 och läs som förut in den i R med kommandot > data <- read.table("temperatur.txt",header=true) Filen innehåller fem kolumner: year som anger året, globe som anger den globala medeltemperaturen, nh som anger medeltemperaturen för norra halvklotet, sh som anger medeltemperaturen för södra halvklotet och shnext som anger medeltemperaturen för södra halvklotet året efter. Data kommer från Carbon Dioxide Information Analysis Center ( Skapa sedan variablerna 1 Perioden används internationellt som referensperiod när man skall avgöra om klimatet avviker på något sätt. När exempelvis TV-meteorologerna säger att medeltemperaturen under den kommande femdygnsperioden ligger över eller under det normala är det motsvarande period under de jämför med. 3
4 > year <- data$year > globe <- data$globe > nh <- data$nh > sh <- data$sh > shnext <- data$shnext 1. Genomför en enkel linjär regression av den globala medeltemperaturen som responsvariabel och år som bakgrundsvariabel inklusive residualplot och normalfördelningsplot. 2. Anser ni att förutsättningarna för modellen enkel linjär regression är uppfyllda? Uppgift 1 skall redovisas med residualplot och normalfördelningsplot och de slutsatser ni har dragit från dessa. Uppgift 2: Jordens medeltemperatur under tre perioder Ett sätt att få modellen att passa bättre är att dela in hela mätperioden i ett antal delperioder. Vi skall nu dela in datamaterialet i tre separata tidsperioder, nämligen , och Man kan nu dela upp samtliga variabler i tre delar med hjälp av logiska uttryck som i Uppgift 2 i andra datorlaborationen enligt mönstret > globe1 <- globe[year <= 1929] > globe2 <- globe[(year >= 1930) & (year <= 1969)] > globe3 <- globe[year >= 1970] 1. Dela upp variabeln year enligt samma mönster och genomför enkel linjär regression på alla tre tidsperioder var för sig och undersök om förutsättningarna nu är bättre uppfyllda. 2. En direktör för oljebolaget Fossil Fools hävdar: Växthuseffekten är inget problem, det finns ingen bevisad trend mot ett varmare klimat. Testa denna hypotes på signifikansnivån 5 % för perioden Bör testet vara ensidigt eller tvåsidigt? Uppgift 2 skall redovisas med punktskattningar av α och β för alla tre tidsperioder samt resultatet av testet i fråga 2. Uppgift 3: Samband mellan norra och södra halvkloten? En grupp fysiker har en hypotes att klimatet på norra halvklotet påverkar klimatet på södra halvklotet med ett års fördröjning. För att undersöka denna hypotes beräknar de 4
5 korrelationskoefficienten mellan medeltemperaturen på norra halvklotet ett visst år och medeltemperaturen på södra halvklotet året efter. Till sin glädje finner de att den uppskattade korrelationskoefficienten blir och att p-värdet blir i princip lika med noll. 1. Rita en scatterplot och verifiera att fysikerna har räknat rätt. 2. Fysikerna använder resultatet för att hävda att klimatet på norra halvklotet påverkar klimatet på södra halvklotet. Den höga korrelationen kan dock förklaras på ett annat sätt, som är mer troligt. Vilket då? 3. Testa hypotesen att medeltemperaturen på norra och södra halvklotet samma år är okorrelerade på signifikansnivån 10 % för data under den senaste 25-årsperioden Rita även en scatterplot över data. Testa både med Pearsons och Spearmans korrelationskoefficienter. Får ni samma resultat? Uppgift 3 skall redovisas med svar på fråga 2 och uppskattade korrelationskoefficienter och resultat av testen i fråga 3. Dessutom skall scatterplot från fråga 1 och 3 bifogas. Skriftlig laborationsrapport Precis som i förra datorövningen skall uppgifterna redovisas skriftligt i en strukturerad och genomtänkt laborationsrapport försedd med ett titelblad där kursens namn, laborationens nummer och ert/era namn tydligt skall anges. På kurshemsidan finns instruktioner för hur en skriftlig redovisning skall se ut. 5
Laboration 2: Statistisk hypotesprövning
STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 2: Statistisk hypotesprövning Huvudsyftet med denna andra datorlaboration är
Läs merSTOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på
Läs merGör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Läs merTentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14
STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 23 maj 2013 Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14 Examinator: Gudrun Brattström,
Läs merDATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2014 Avd. Matematisk statistik GB 2014-03-17 DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV. Till den här datorlaborationen
Läs merLaboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Läs merLaboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
Läs merLaboration 4 Regressionsanalys
Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns
Läs merLaboration 1: Introduktion till R och Deskriptiv statistik
STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 1: Introduktion till R och Deskriptiv statistik Denna första datorlaboration
Läs mer1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Läs mer10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Läs mer2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Läs merTentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merRegression med kvalitativa variabler. Jesper Rydén
Regression med kvalitativa variabler Jesper Rydén 1 2 UPPSALA UNIVERSITET Matematiska institutionen Jesper Rydén Matematisk statistik 1MS026 Tillämpad statistik vt 2013 REGRESSION MED KVALITATIVA VARIABLER
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merMatematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
Läs mer732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs merlära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de
Läs merLösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Läs merPreliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Läs merTVM-Matematik Adam Jonsson
TVM-Matematik Adam Jonsson 014-1-09 LABORATION 3 I MATEMATISK STATISTIK, S0001M REGRESSIONSANALYS I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistikprogrammet
Läs merSTOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av
Läs merMatematiska Institutionen Silvelyn Zwanzig 13 mar, 2006
UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.
Läs merFöreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Läs mertentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs merEn rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Läs merEn scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Läs merLaboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs mer732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Läs merDatorövning 1 Enkel linjär regressionsanalys
Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband
Läs merLaboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
Läs merLUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs mer(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p)
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 14 april, 2007 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,
Läs merLaboration med MINITAB, Del 2 Om Fyris ns global uppv rmning
Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Silvelyn Zwanzig, Matematiska Statistik NV1, 2005-03-03 1. Datamaterial I de uppgifter som f ljer skall du l ra dig hur Minitab anv ndas f r
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Läs merLABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistik-programmet
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Läs merSannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Torsdagen den 22 december, 2006 kl 14.00-18.00 i M-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merFöreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Läs merMatematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merLaboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Läs merTENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS
STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan
Läs merValfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,
Läs merTentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli
Läs merEtt A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2017-12-08, 8-12 Bertil Wegmann
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Läs merStatistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Läs merUppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
Läs merExtrauppgifter. Uppgifter. 1. Den stokastiska variabeln Y t(10). Bestäm c så att P ( c < Y < c) = 0.95.
Extrauppgifter Uppgifter 1. Den stokastiska variabeln Y t(10). Bestäm c så att P ( c < Y < c) = 0.95. 2. De stokastiska variablerna X och Y är oberoende och χ 2 (5) respektive χ 2 (7). (a) Bestäm a och
Läs merÖVNINGSTENTAMEN: Statistisk modellering för I3, TMS160 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista och typgodkänd
ÖVNINGSTENTAMEN: Statistisk modellering för I3, TMS160 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista och typgodkänd räknedosa. Poängberäkning: Uppgifterna är av flervalstyp,
Läs merLABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik, LP1, HT 2015, Adam Jonsson LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i enkel regressionsanalys
Läs merÖvningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Läs merI vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
Läs mera) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?
Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten
Läs merLaboration 4: Hypotesprövning och styrkefunktion
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merKroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Läs merförstå modellen enkel linjär regression och de antaganden man gör i den Laborationen är dessutom en direkt förberedelse inför Miniprojekt II.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 2, 6 DECEMBER 2017 Syfte Syftet med den här laborationen är att du ska
Läs merMatematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2
Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.
Läs merTENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen
Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Läs merStatistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018
Statistiska analysmetoder, en introduktion Fördjupad forskningsmetodik, allmän del Våren 2018 Vad är statistisk dataanalys? Analys och tolkning av kvantitativa data -> förutsätter numeriskt datamaterial
Läs merLaboration 3: Enkla punktskattningar, styrkefunktion och bootstrap
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,
Läs merDatorövning 2 Statistik med Excel (Office 2007, svenska)
Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter
Läs merLinjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
Läs merDel A: Schema för ifyllande av svar nns på sista sidan
Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa
Läs merLaboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall
Läs merF12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24
1/24 F12 Regression Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/2 2013 2/24 Dagens föreläsning Linjära regressionsmodeller Stokastisk modell Linjeanpassning och skattningar
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs merFöreläsning 8 och 9: Regressionsanalys
Föreläsning 8 och 9: Pär Nyman par.nyman@statsvet.uu.se 1 februari 2016-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.
Läs merLaboration 2. Omprovsuppgift MÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 Hp Vårterminen 2017 Laboration 2 Omprovsuppgift Regressionsanalys, baserat på Sveriges kommuner
Läs merStatistiskt säkerställande av skillnader
Rapport Statistiskt säkerställande av skillnader Datum: Uppdragsgivare: 2012-10-16 Mindball Status: DokumentID: Slutlig Mindball 2012:2, rev 2 Sammanfattning Totalt 29 personer har tränat med koncentrationshjälpmedlet
Läs merSänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Läs merMatematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
Läs merTentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14
STOCKHOLMS UNIVERSITET MT 5001 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 13 januari 2014 Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14 Examinator: Martin Sköld, tel.
Läs merÖvningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Läs merEtt A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann
Läs merSF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Läs merLaboration 3: Icke-parametrisk korrelations- och regressionsanalys
STOCKHOLMS UNIVERSITET 7 oktober 2004 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Laboration 3: Icke-parametrisk korrelations- och regressionsanalys I den här laborationen
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett
Läs merTAMS65 DATORÖVNING 2
TAMS65 DATORÖVNING 2 Datorövningen behandlar multipel linjär regression Förberedelser Läs allmänt om regressionsanalys i boken och på föreläsningsanteckningarna Glöm inte att rensa minnet och alla fönster
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
Läs merRegressions- och Tidsserieanalys - F4
Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1
Läs merStatistik 2 2010, 3.-9.5.2010. Stansens PC-klass ASA-huset. Schema: mån ti ons to fre 9.15-12.00 9.15-12.00 10.15-13.00 10.15-12.00 10.15-12.
Statistik 2 2010, 3.-9.5.2010 Stansens PC-klass ASA-huset. Schema: mån ti ons to fre 9.15-12.00 9.15-12.00 10.15-13.00 10.15-12.00 10.15-12.00 13.15-15.00 13.15-15.00 13.15-16.00 13.15-16.00 Under kursens
Läs merMatematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-10-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: A. Jonsson, M. Shykula,
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik MSTA16, Statistik för tekniska fysiker A Peter Anton TENTAMEN 2004-08-23 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistik för tekniska
Läs mer