Laboration 3: Parameterskattning och Fördelningsanpassning

Storlek: px
Starta visningen från sidan:

Download "Laboration 3: Parameterskattning och Fördelningsanpassning"

Transkript

1 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet med denna datorlaboration är att undersöka i vilken mån några av de fördelningar som presenterats i kursen kan användas för att beskriva olika slumpmässigt varierande fenomen, som vi kan iaktta i vår omvärld. Vi skall främst presentera några enkla grafiska metoder som man kan använda för att undersöka vilka fördelningar som vårt datamaterial skulle kunna komma från. Vi skall främst studera normal- och exponentialfördelningen med hjälp av simuleringar men också med utgångspunkt i verkliga datamaterial. Analysen kommer huvudsakligen att vara grafisk, men vi kommer också att illustrera begreppet punktskattning. I kommande laborationer och på räkneövningarna kommer ni att träna olika metoder att beräkna s. k. parameterskattningar. Exempel på parametrar som ni kommmit i kontakt med är p i binomialfördelningen och m i normalfördelningen. Parameterskattningar behövs i denna laboration för att kunna anpassa den fördelning vi ansatt till det givna datamaterialet. I dessa sammanhang kan MATLAB-funktionerna mean, var och std ofta vara till nytta. Förberedelseuppgifter Du skall ha läst igenom hela denna handledning och löst förberedelseuppgifterna innan du kommer till laborationen. Hemuppgift 1: Antag att ni erhållit ett datamaterial, stickprovet x = (x 1, x 2, x 3,..., x n ) och att ni vill beskriva detta datamaterial med hjälp av MATLAB. Fyll i nedanstående tabell: a b c Aritmetiskt medelvärde för x Stickprovsstandardavvikelse för x Stickprovsvarians för x Beteckning i boken Kommando i MATLAB Antag att ni har anledning att tro att x kommer från en normalfördelning. Lämna förslag på hur man med hjälp av stickprovet x skulle kunna skatta väntevärdet, m, och standardavvikelsen, s, i denna fördelning. Hemuppgift 2: Med hjälp av ett stickprov, t.ex. x, från en stokastisk variabel, t. ex. X, kan man även skatta fördelningsfunktionen för X. Datapunkterna, x i sorteras från minsta till största. Andelen datapunkter som är mindre eller lika med x i plottas sedan mot x i. Det blir en växande trappstegsfunktion som tar ett skutt med höjd 1/n för varje datapunkt. Denna funktion kallas empirisk fördelningsfunktion och genom den kan bl. a. kvantilerna för X skattas. En exakt beskrivning av hur man gör en empirisk fördelningsfunktion följer nedan. Vid ett givet slumpmässigt stickprov x=(x 1, x 2,...,x n ) gör man på följande sätt: (a) Först sorteras stickprovet i växande ord-

2 ning, betecknas x (1), x (2),...,x (n). (b) Man skattar fördelningsfunktionen F(x) med det vi kallar för den empiriska fördelningsfunktionen F n (x). Den definieras som: F n (x) = 0, x < x (1), i/n, x (i) x < x (i+1), 1, x (n) x (c) Därefter plottas de n stycken talparen (x (i), i n ) så att ett hopp från (i 1)/n till i/n med höjd 1/n bildas för varje x (i). Rita den empirska fördelningsfunktionen för stickprovet x = ( 4.6, 1.6, 1.0, 0.8, 0.4, 0.9, 2.1, 2.7, 4.0, 4, 9) Vi ska snart se hur detta kan göras med hjälp av Matlab-kommandon. Skatta nu med hjälp av er figur medianen för den fördelning som x kommer ifrån. Vad anger y-axeln i er figur? Hemuppgift 3: Läs om normalfördelningspapper i boken, s Hemuppgift 4: Repetera avsnitt 6.3 om centrala gränsvärdessatsen i kursboken, s Fördelningspapper 2.1 Empirisk fördelningsfunktion och normalfördelningspapper I MATLAB kan den empiriska fördelningsfuntionen, F n (x), ritas med hjälp av funktionen stairs. Nedanstående kommandorader exemplifierar tekniken med hjälp av 100 observationer från en stokastisk variabel X N (2, 1). >> A = normrnd(2,1,100,1); >> B = sort(a); >> Fn = (1:1:length(B))/length(B); % övre hörn för F_n >> stairs(b,fn); >> grid on Istället för att skriva en egen m-fil som samlar ihop ovanstående kommandon kan man använda Matlabs inbyggda funktion cdfplot som automatiskt plockar fram den empiriska fördelningsfunktionen F n (x). Prova själv. Använd help för att komma underfund med funktionen. Plotta därefter den empiriska fördelningsfunktionen för stickprovet A. >> help(cdfplot) >> cdfplot(a); Uppgift 2.1: På y-axeln har vi F n (x). Använd denna för att skatta väntevärdet i den fördelning som vektorn A är en observation av. Uppgift 2.2: Eftersom vi känner m och s i det här fallet (se kommandot som användes för att generera A) kan vi komplettera figuren med den riktiga fördelningsfunktionen, F X (x). Gör det och glöm inte att använda hold on innan du plottar F X (x) ovanpå F n (x). Fördelningsfunktionen för en normalfördelning kallas i Matlab för normcdf(x,m, s) %generera först en x-vektor %med lämpliga ändpunkter >> x=min(b)-0.1:0.01:max(b)+0.1; >> hold on >> plot(x,normcdf(x,2,1)) >> hold off Om vi vet eller misstänker att stickprovet kommer från en normalfördelning kan vi istället plotta det ordnade stickprovet i ett normalfördelningspapper. Skalan på y-axeln i ett normalfördelningspapper är anpassad så att observationerna kommer att följa en rät linje om de är normalfördelade. Om vi får någon kurvatur indikerar detta alltså att observationerna inte är normalfördelade. I MATLAB kan man direkt plotta ett stickprov 2

3 i ett normalfördelningspapper med kommandot normplot. Använd help för att komma underfund med funktionen. Plotta därefter stickprovet A i ett normalfördelningspapper. >> help normplot >> normplot(a) Uppgift 2.3: Försök lista ut hur man skattar s i en normalfördelningsplott. Titta gärna i boken på sidan 277. Verifiera tekniken med er labhandledare. Skatta nu väntevärdet m och standardavvikelsen s i normalfördelningsplotten. Stämmer det med det använda stickprovet? 2.2 Validering av fördelning normalfördelningspapper Under kursens gång har du kommit i kontakt med ett antal olika fördelningar modeller för slumpvariation. Gemensamt för dessa fördelningar är att de innehåller en eller flera parametrar som påverkar fördelningens läge och spridning (och ibland även form). I praktiska sammanhang arbetar man ofta under antagande om att de mätningar man gör, observationer av slumpvariabler, kommer från en viss fördelning, men man känner inte värdena av de aktuella parametrarna för fördelningen. Ett naturligt tillvägagångssätt är då att använda det insamlade datamaterialet till att skatta dessa parametrar. Varje skattning som man åstadkommer på detta vis blir således en funktion av det insamlade datamaterialet. Stickprovsmedelvärdet, x, och stickprovsvariansen, s 2, är exempel på sådana funktioner. I det här laborationsmomentet skall du i första hand studera fördelningen hos ett stickprov och då speciellt i relation till normalfördelningen. För att få lite rutin på hur ett stickprov ser ut när det inte kommer från en normalfördelning, ska du plotta stickprov som kommer från andra fördelningar. Använd MATLABs inbyggda slumptalsfunktioner, normrnd, rand samt exprnd, för att generera slumptal från normal-, rektangel- och exponentialfördelningar. Uppgiften kan du lösa genom att simulera, till exempel, 100 slumptal från respektive fördelning. Skriv gärna era kommandon först i en m.fil, för smidig återanvändning >> N = normrnd(2,1,100,1); % slumptal från en normalfördelning >> R = 4*rand(100,1); % rektangelfördelade på (0, 4) >> E = exprnd(2,100,1); % Exponentialfördelade slumptal Uppgift 2.4: Undersök hur den empiriska fördelningsfunktionen, F n (x), ser ut för ett normalfördelat, rektangelfördelat respektive exponentialfördelat stickprov. För att kunna jämföra de tre fördelningarna är det bra att plotta dem med subplot-funktionen. Välj t. ex. >> figure subplot (311) för N, subplot (312) för R, subplot (313) för E % Exempel för normalfördelningen % >> subplot(311) >> cdfplot(n); >> grid on >> title( Empirisk fördelningsfunktion från normalfördelning ) Upprepa för N, R och E så att ni får alla tre fördelningarna i var sin subplot. Jämför de tre plottarna. Uppgift 2.5: Avgör därefter hur N, R, och E ser ut i ett normalfördelningspapper. Använd först kommandot (figure) så att ni får fram en ny figur. Gör sedan en ny figur med tre subplottar i samma ordning som de tidigare med kommandot (normplot). Märk på något sätt ut vilken subplot som hänger ihop med vilken fördelning (T. ex. med title). Beskriv resultatet: 3

4 Uppgift 2.6: Skatta väntevärde och varians för var och en av de tre fördelningarna med hjälp av MATLAB och de simulerade slumptalen från respektive fördelningar i N, R, samt E. Använd x för att skatta väntevärdet och s 2 för att skatta variansen, dvs kommandona mean och var i MATLAB. Jämför era parameterskattningar med respektive fördelnings riktiga parametrar E( ) och V( ). Dessa kan erhållas genom att studera era kommandon när ni simulerade stickproven. Använd formelsamlingen och kurslitteraturen för att identifiera parametrarna. Hur stämmer era skattningar med de riktiga parametrarna? Uppgift 2.7: Nu skall ni studera fördelningen för medelvärdet i de tre fördelningarna. Från varje fördelning kan man få 100 medelvärden genom att i stället simulera 100 stickprov med till exempel 1000 observationer och lagra slumptalen i en matris. När man i MATLAB bildar medelvärdet av en matris fås en vektor med medelvärdet för respektive kolonn. Studera först vad som händer när man tar medelvärdet av en 3x2-matris: >> Y=[3 30;5 25; 4 20] >> mean(y) >> NN = normrnd(2,1,1000,100); % slumptal från en normalfördelning >> RR = 4*rand(1000,100); % rektangelfördelade på (0, 4) >> EE = exprnd(2,1000,100); % Exponentialfördelade slumptal Beräkna medelvärdet av respektive kolonn i matriserna, NN, RR samt EE. Du får alltså 100 observationer av medelvärden från respektive fördelning. Plotta dessa i varsitt normalfördelningspapper. %Exempel för normalfördelningen >> DN = mean(nn); >> figure >> subplot(311) >> normplot(dn); >> title( Medelvärden av 1000 stickprov från en normalfördelning ) Komplettera med motsvarande figurer för de andra fördelningarna och jämför även med den tidigare bilden med normalfördelningsplottar för de tre fördelningarna. Uppgift 2.8: Vilken fördelning skall du approximativt få enligt teorin kring Centrala GränsvärdesSatsen (CGS) i vart och ett av de tre fallen? Stämmer resultatet med CGS? Uppgift 2.9: Vi vet att om X 1,..., X n är oberoende stokastiska variabler med E(X i ) = m och V (X i ) = s 2 för i = 1,..., n så är n i=1 E( X i ) = m n och n i=1 V ( X i ) = s2 n n. Beräkna med hjälp av dessa uttryck väntevärde och varians hos var och en av de tre stokastiska variabler som mean(nn), mean(rr) och mean(ee) är observationer av. Skatta sedan, med hjälp av MATLAB-kommandona mean och var, väntevärde och varians hos dessa tre stokastiska variabler. Hur stämmer skattningarna med de teoretiska värdena? 3 Återanknytning till Lab 1 (* frivillig uppgift) 3.1 Jordbävningar I laboration 1 studerade ni datamaterial över tidsavståndet mellan de stora jordbävningarna under 1900-talet. Om det är så att dessa jordbävningar förekommer slumpmässigt i tiden så kommer tidsavståndet mellan två efterföljande händelser att vara exponentialfördelad, s.v. Exp(l). Datamaterialet kommer ni åt med hjälp av kommandot load(quakeper). 4

5 Uppgift 3.1: Undersök ifall exponetialfördelningen eller normalfördelningen är en vettig modell för detta datamaterial. Plocka fram följande tre figurer med hjälp av Matlab. subplot (311) för Normerat histogram, subplot (312) för Empirisk fördelningsfunktion, subplot (313) för Koll av normalfördelningsantagandet Undersök nu om man kan anpassa en exponetialfördelning till datamaterialet. Uppgift 3.2: Hur skattar man väntevärdet E[x] i en exponentialfördelning?. >> figure % Quakeperiod % >> subplot(211) >> hist2(quakeper,20); >> title( Quakeperiod, normerat histogram ) >> grid on, hold on >> help(exppdf) >> % Fixa en tidsaxel % >> % Plotta täthetssfunktionen % >> subplot(212) >> cdfplot(quakeper); >> title( Empirisk fördelningsfunktion ) >> grid on, hold on >> help(expcdf) >> % Fixa en tidsaxel % >> % Plotta Fördelningsfunktionen % Uppgift 3.4: Vad får ni för skattning av 10 %-kvantilen? Uppgift 3.3: Hur använder man denna skattning för skatta värdet på parametern i exponentialfördelningen? Vad fick ni för värde? Plocka nu fram en ny figur och plotta en exponetialfördelning där ni som parametervärde använder er skattning. Täthetsfunktionen för en exponetialfördelad slumpvariabel heter i Matlab: exppdf och fördelningsfunktionen kallas för expcdf. 4 Avslutning Vi har i denna datorlaboration sett exempel på hur man med en kombination av teori och empiri kan hitta fördelningar som mer eller mindre väl beskriver den slumpmässiga variationen hos verkliga händelser. Kan vi hitta en sannolikhetsfördelning vars teoretiska egenskaper är väl kända och som dessutom passar väl till de observationer vi gjort i verkligheten, så ger detta oss en möjlighet att beräkna olika sannolikheter och på mera objektiv grund bedöma risker, med mera. 5

6 Användbara Matlab-kommandon help kommando ger en hjälptext till kommandot kommando load filnamn hämtar alla variabler från filen filnamn.mat och laddar in dem i Matlab whos ger en detaljerad lista över de variabler som finns definierade hist(x) ritar ett 10-intervalls histogram för elementen i vektorn x mean(x) beräknar aritmetiska medelvärdet av elementen i vektorn x mean(a) om A är en m n matris fås en 1 n matris innehållande aritmetiska medelvärdena för varje kolonn i A median(x) beräknar medianen av elementen i vektorn x std(x) beräknar standardavvikelsen av elementen i vektorn x var(x) beräknar variansen av elementen i vektorn x plot(x,y,str) plottar y mot x. Använder färg och form enligt strängen str plot(y,str) plottar de ordnade talparen (j, y j ). Använder färg och form enligt strängen str subplot(m,n,p) delar grafikfönstret i m n delfönster, aktuellt fönster blir fönster nr p, delfönstren numreras från vänster till höger, uppifrån och ner title(text) skriver ut strängen text överst i grafikfönstret hold on håller kvar aktuellt grafikfönster så att man kan rita flera figurer i samma fönster hold off avlutar kvarhållningen av grafikfönster axis([v1 v2 v3 v4]) sätter axlarnas skalor så att x min = v1, x max = v2, y min = v3 och y max = v4 sort(x) ger en vektor med elementen i vektorn x sorterade i växande ordning rand(m,n) ger en m n-matris med slumptal från en rektangelfördelning på (0,1) normrnd(m,s,i,j) ger en i j-matris med slumptal från en normalfördelning med väntevärde m och standardavvikelse s exprnd(m,i,j) ger en i j-matris med slumptal från exponentialfördelning med väntevärde m i:j:k ger en följd av värden från i till j i steg om j, dvs i,i+j,i+2j,...k figure öppnar ett nytt grafikfönster stairs(z, x) ritar trappstegsdiagram över värdena i x i positionerna givna av vektorn z grid on ritar ut ett rutnät i grafikfönstret grid off tar bort rutnätet från grafikfönstret cdfplot(x) plottar den empiriska fördelningsfunktionen mot värdena i x normplot(x) plottar data i x i ett normalfördelningspapper expcdf(x,m) ger fördelningsfunktionen för en exponentialfördelad stokastisk variablel med väntevärde m, beräknad i punkterna i x exppdf(x,m) ger täthetsfunktionen för en exponentialfördelad stokastisk variablel med väntevärde m, beräknad i punkterna i x 6

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Laboration 1: Beskrivande statistik

Laboration 1: Beskrivande statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 1: Beskrivande statistik 1 Syfte Syftet med den här laborationen

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

Lunds tekniska högskola Matematikcentrum Matematisk statistik

Lunds tekniska högskola Matematikcentrum Matematisk statistik Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 1 Syfte Syftet med dagens laboration är att du ska träna på att hantera olika numeriska

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse

Läs mer

Lunds tekniska högskola Matematikcentrum Matematisk statistik

Lunds tekniska högskola Matematikcentrum Matematisk statistik Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 1, 2012-03-30 Syfte Syftet med dagens laboration är att du ska träna på att hantera olika

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Laboration 4: Lineär regression

Laboration 4: Lineär regression LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Datorövning 1 Introduktion till Matlab Fördelningar

Datorövning 1 Introduktion till Matlab Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

Sannolikhet och statistik med Matlab. Måns Eriksson

Sannolikhet och statistik med Matlab. Måns Eriksson Sannolikhet och statistik med Matlab Måns Eriksson 1 Inledning Det här kompiet är tänkt att användas för självstudier under kursen Sannolikhet och statistik vid Uppsala universitet. Målet är att använda

Läs mer

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 0, HT-0! "$&%')(+*,-./01.02% 1 Syfte Syftet med den här laborationen är att du ska bli

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Laboration 1: Mer om Matlab samt Deskriptiv statistik

Laboration 1: Mer om Matlab samt Deskriptiv statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboration 1: Mer om Matlab samt Deskriptiv statistik 1 Syfte Syftet med den

Läs mer

Föreläsning 3, Matematisk statistik Π + E

Föreläsning 3, Matematisk statistik Π + E Repetition Kvantil Presentation Slumptal Transformer Inversmetoden Föreläsning 3, Matematisk statistik Π + E Sören Vang Andersen 13 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F3 1/19 Repetition

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk

Läs mer

Datorövning 3 Bootstrap och Bayesiansk analys

Datorövning 3 Bootstrap och Bayesiansk analys Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på två olika

Läs mer

Projekt 1: Om fördelningar och risker

Projekt 1: Om fördelningar och risker LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Projekt 1: Om fördelningar och risker 1 Syfte I den första delen av detta projekt skall vi försöka

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall.

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall. UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin Statistik för ingenjörer 1MS008 VT 2011 DATORÖVNING 2: SKATTNINGAR OCH KONFIDENSINTERVALL 1 Inledning I den här datorövningen ser vi hur R kan

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Simulering av slumpvariabler i R. 1 Normalfördelningen. Uppgift 1. Uppgift 2

Simulering av slumpvariabler i R. 1 Normalfördelningen. Uppgift 1. Uppgift 2 Lunds univrsitet Matematikcentrum Matematisk statistik Biostatistisk grundkurs, MASB11 Laboration 3 VT-2015, 150217 Fördelningsanpassning och Centrala Gränsvärdes Satsen Introduktion Syftet med laborationen

Läs mer

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden

Läs mer

Laboration 1: Introduktion till R och Deskriptiv statistik

Laboration 1: Introduktion till R och Deskriptiv statistik STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 1: Introduktion till R och Deskriptiv statistik Denna första datorlaboration

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen

Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR ED, FMS021, VT01 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Syftet med

Läs mer

Datorövning 3 Bootstrap och Bayesiansk analys

Datorövning 3 Bootstrap och Bayesiansk analys Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-17 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17 1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,

Läs mer

SF1910 Tillämpad statistik, HT 2016 Laboration 1 för CSAMHS, CLGYM-TEMI

SF1910 Tillämpad statistik, HT 2016 Laboration 1 för CSAMHS, CLGYM-TEMI Matematisk Statistik Introduktion SF1910 Tillämpad statistik, HT 2016 Laboration 1 för CSAMHS, CLGYM-TEMI Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

FÖRELÄSNING 7:

FÖRELÄSNING 7: FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för CDIfysiker, FMS012/MASB03, HT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

1 Sannolikhet enligt frekvenstolkningen Kast med tärning

1 Sannolikhet enligt frekvenstolkningen Kast med tärning Lunds univrsitet Matematikcentrum Matematisk statistik Biostatistisk grundkurs, MASB11 Laboration 2 HT-2014, 141212 Fördelningar och simulering Introduktion Syftet med laborationen är dels att vi skall

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3

SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3 Matematisk Statistik SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3 1 Introduktion Denna demonstration är inte poänggivande, men utgör en förberedelse för den andra

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS

Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Laboration 2: Styrkefunktion samt Regression

Laboration 2: Styrkefunktion samt Regression Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens

Läs mer

1 Introduktion till projektuppgiften

1 Introduktion till projektuppgiften Lunds tekniska högskola Matematikcentrum Matematisk statistik Datorlaborationer del I, HT-13 Matematisk statistik för B,K,N och MedTekn, fms086, masb02 För att få tillgång till de datafiler som hänvisas

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/200, HT-03 Laboration 5: Intervallskattning och hypotesprövning Syftet med den här

Läs mer

Laboration 5: Intervallskattning och hypotesprövning

Laboration 5: Intervallskattning och hypotesprövning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-01 Laboration 5: Intervallskattning och hypotesprövning Syftet med den här laborationen

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan) Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år). Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

LKT325/LMA521: Faktorförsök

LKT325/LMA521: Faktorförsök Föreläsning 2 Innehåll Referensfördelning Referensintervall Skatta variansen 1 Flera mätningar i varje grupp. 2 Antag att vissa eekter inte existerar 3 Normalfördelningspapper Referensfördelning Hittills

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.

Läs mer

KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03

KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03 Allmänt Kursen ger 9hp och omfattar 36 timmar föreläsning, 28 timmar

Läs mer

histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1

histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1 Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall

Läs mer

histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid

histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer