1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation

Storlek: px
Starta visningen från sidan:

Download "1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation"

Transkript

1 UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen väntevärde och varians, dels utifrån de teoretiska fördelningarna och dels utifrån datorsimuleringar. Vi skall också titta på några standardfördelningar och bland dessa välja en lämplig fördelning som passar till hastighetsmätningarna. Vi skall också studera fördelningarna för summor av stokastiska variabler och vad som händer när antalet termer i summan växer. Vi skall också fördjupa begreppet sannolikhet via frekvenstolkning genom att genomföra en enkel riskstudie dels via datorsimuleringar och dels genom teoretiska överläggningar. Projektet skall redovisas i form av en rapport. Rapporten skall omfatta vissa nyckelmoment så det är viktigt att du läser igenom projekthandledningen och gör upp en disposition för hur rapporten skall se ut innan du börjar själva arbetet. Tänk till exempel efter vilka frågor det är som skall besvaras och vilka figurer och histogram som då bör vara med i rapporten. 2 Moment hos och faltning av fördelningar 2.1 Förberedelseuppgifter (a) ur lyder definitionen av väntevärde? (b) ur lyder definitionen av varians? (c) ur kan variansen beräknas på annat sätt än direkt genom definitionen? (Det finns en omskrivning som ofta är mer användbar i praktiska sammanhang.) Om E(X ), 2 och V(X ), 1-3, vad får då (d) Y, (X. 1)- 3 för väntevärde respektive varians? (e) Om X är likformigt fördelad på intervallet (1/ 3), vilken fördelning får då Y, (X. 1)- 3? Vad har Y för väntevärde och varians? Vad har X för väntevärde och varians? ur stämmer detta överens med föregående uppgift? (f) åt X R(. 1/ 1) och beräkna 12, E(X ), V(X ), täthetsfunktionen för Y, (X.1 ) 2 och E(Y ). (g) Om X och Y är oberoende och P(X, ), 1-3/ P(X, 1), 1-2/ P(X, 2), 1-6/ medan Y kan anta värdena / 1/ 2/ 3 med lika sannolikheter, vad är då sannolikhetsfunktionen för den stokastiska variabeln Z, Y 3 X? 2.2 Angående grafisk presentation Först en liten kommentar angående stolpdiagram och histogram. Då vi arbetar med diskreta stokastiska variabler och vill plotta resultat från studier av dessa använder vi stolpdiagram, just för att understryka variablernas diskreta karaktär. I ett stolpdiagram är det höjden av varje stolpe som representerar den relativa frekvensen (se Fig. 1). Vid arbete med kontinuerliga stokastiska variabler är det mera ändamålsenligt att indela materialet i klasser och rita ett histogram. I ett histogram är det arean av varje stapel som representerar den relativa frekvensen (se Fig. 2). På detta sätt får histogrammet en viktig egenskap gemensam med täthetsfunktionen nämligen att den sammanlagda arean under grafen är lika med ett. (Se i övrigt avsnittet om beskrivande statistik i kursboken.)

2 $ < $ 6 ;! S B < b v Figur 1 Stolpdiagram Figur 2 istogram Slumptalsgeneratorn i MATAB genererar slumptal från en rektangelfördelning över intervallet från noll till ett, dvs observationer av en stokastisk variabel X R(/ 1). Uppgift 2.1 ger dis- Är den stokastiska variabeln X som kret eller kontinuerlig? Uppgift 2.2 ur bär du dig åt för att plotta en diskret funktion i MATAB? Uppgift 2.3 ur bär du dig åt för att plotta en kontinuerlig funktion i MATAB? Uppgift 2.4 Börja med att plotta täthetsfunktionen för X. Generera sedan, till exempel, hundra slumptal från denna fördelning och plotta histogrammet över de relativa frekvenserna för detta stickprov i samma figur som täthetsfunktionen F8 "!7J F8 $ K15G?!7J F8 Eftersom ett histogram enligt definitionen i kursboken (och avsnitt 2.2 ovan) är arean av varje stapel som representerar den relativa frekvensen, använder vi 8 $ K istället för den i MATAB inbyggda 8 $ som använder absoluta frekvenser till staplarnas höjd. 2.3 Väntevärde Gör om simuleringarna ovan men med 1 observationer från X R(/ 1) istället och rita om histogrammet tillsammans med täthetsfunktionen. Öppna sedan ett nytt grafikfönster med kommandot 9$3>;. I detta fönster skall du plotta de successiva medelvärdena, M ;7@; 5G"!N)5ON@,PQ@ "!, för de 1, 2, 3,..., 1 första observationerna tillsammans med den linje som anger vad medelvärdena bör konvergera mot F IR D IR U $@ NV ;=; "! Uppgift 2.5 T > E3T 6 ( "! $ '&(*)',)'-.)/"! ; < = 6 2 >?$@ > B 12 2C! D B 12!E2C! 29) )) *A 5@!725"! Använd dina figurer och beräkningar för att förklara vad väntevärdet för den stokastiska variabeln X är. 2

3 $ S S B $ ; B & 2.4 Varians Vi skall nu titta på variansen för X. Eftersom V(X ) är definierad som E((X.!1 ) 2 ) där 12, E(X ) (X. 1 ) 2. Detta skall vi bilda slumptal från Y, görs genom kommandot 5G & ;!N) 3K D ;- 'G?! Plotta sedan, i ett annat fönster och på samma sätt som för väntevärdet, de successiva medelvärdena D M ;,@;(?!N)'ON@.P 9! tillsammans med en linje som anger vad de borde konvergera mot. Uppgift 2.6 Använd dina figurer och beräkningar för att förklara vad variansen för den stokastiska variabeln X är. Vi skall nu studera R(. 1/ 1)-fördelningen på samma sätt och sedan jämföra de två. Generera alltså, i en vektor GE, 1 slumptal från denna fördelning (uppgift 53 kanske kan ge en viss ledning) och plotta de successiva medelvärdena på sätt som ovan. Beräkna också E = (X ) 2, där 1 1, E(X 1 ), och plotta de successiva medelvärdena. I förberedelseuppgift (f) beräknade du täthetsfunktionen för Y, (X. 1 ) 2 när X R(. 1/ 1). Plotta den tillsammans med ett histogram över de 1 Y 1-värdena. Detta görs genom kommandona D *P*)/?.P EJ D > (5D D?! 1 254E6 8 3(; < 3B 1 2'D2C! D 3B 1 2 5D"!E2C! 8 8 $ K1 E! 8 Uppgift 2.7 5D?! 6 'G9& ;! 3K12C! Ge en tolkning av väntevärde och varians för en R(. 1/ 1)-variabel. ur förhåller sig dessa till väntevärde och varians för en R(/ 1)-variabel? 3 Simulering av stokastiska variabler, några statistiska standardfördelningar I den här delen av projektet kommer du att simulera slumptal från fördelningarna, rita histogram över slumptalen och även jämföra simulerade värden med motsvarande täthetsfunktioner. 3.1 Rektangelfördelning (likformig fördelning) Fördelningen, som är beskriven på sidan 62 i kursboken, är användbar för att till exempel beskriva avrundningsfel vid mätningar. Den är också grundfördelningen vid simulering av andra fördelningar och vid Monte Carlo-metoder. Funktionen genererar rektangelfördelade slumptal i intervallet [/ 1). Med K@!7J genereras 2 rektangelfördelade slumptal i intervallet [/ 1) och läggs i en 2 1-matris. Ett rektangelfördelat slumptal i intervallet [a/ b) fås med! (tänk efter att det är rimligt!). Uppgift 3.1 Generera 1 slumptal från en rektangelfördelning med a, 2 och b, 1. Plotta data i ett histogram med hjälp av 8 $ K. Verkar det stämma med en rektangelfördelning? Öka antalet slumptal till 1, 1 och 1 och gör respektive normerade histogram. Vad händer? 3.2 Weibullfördelning Weibullfördelningen är mycket användbar för att beskriva variationer i hållfasthetsdata, till exempel sträck-, brott-, och utmattningsgränser. Fördelningsfunktionen ges av F(x), 1. e (x a) c om x och där a och c är konstanter som kan ges olika värden. 3

4 !! > Slumptal från Weibullfördelningen med parametrar a och c läggs i en p q matris med hjälp av MATAB-kommandot O! M M /!. Om man använder STIXBOX blir kommandot istället $@B 1 M för en p q-matris eller $@B / * M för en vektor med p element. Uppgift 3.2 Generera 1 slumptal från en Weibullfördelning med a, 5 och c, 7 och lägg dem i en vektor. Sätt alltså p, 1 och q, 1 i $@B -kommandot. Plotta data i ett histogram med hjälp av 8 $ K. Uppgift 3.3 Bestäm täthetsfunktionen för Weibullfördelningen genom att derivera fördelningsfunktionen F(x), 1. e (x a) c med a, 5 och c, 7. Täthetsfunktionen blir f (x), Du kan rita ut täthetsfunktionen med kommandona *P/*)Q,P J 2 &.2C! där ersätts med det uttryck som du just beräknat. Jämför täthetsfunktionen med histogrammet i föregående uppgift. Du kan plotta histogrammet i samma figur om du har skrivit 89. Glöm inte att skriva 8 innan du fortsätter att rita figurer. Uppgift 3.4 Generera 1 slumptal från en Weibullfördelning med a, 2 och c, 1. Plotta data i ett histogram med hjälp av 8 $ K. Med konstanten c, 1 får man som specialfall exponentialfördelningen. Rita upp dess täthetsfunktion. 3.3 Normalfördelningen Täthetsfunktionen för en normalfördelad stokastisk variabel ges av f X (x), e (x 1 ) för 2. x. Den beror alltså på två parametrar 1 och där 1 är väntevärdet i fördelningen och är standardavvikelsen. Normalfördelningen är en av de fördelningar som används mest inom sannolikhets- och statistikteorin. Funktionen 3 ( 3 i STIXBOX) i MAT- AB genererar normalfördelade slumptal. Kommandot =DI 3 1@E/ "!?J genererar slumptal från en normalfördelning med väntevärdet 3 och standardavvikelsen 1 och placerar dem i matrisen D med dimensionen p q. (STIXBOX N@! ) Uppgift 3.5 Generera 1 slumptal från en normalfördelning med m, 2 och, 5. Plotta data i ett histogram med hjälp av 8 $ Uppgift 3.6 Generera 1 slumptal från en normalfördelning med m, 2 och, 2. Plotta data i ett histogram med hjälp av 8 $ K. ur påverkar - värdet dina histogram? Normalfördelningens täthetsfunktion, f X (x) fås genom (STIXBOX ). Rita ut normalfördelningar för olika värden på m och och se hur fördelningarna påverkas *P*)Q.PQ@ J F F8 F F F F8 K. KN )'9!! N )'9!72 2! N K!72 2C! N )Q!725D2! 4

5 > J Fördelningsfunktionen, F X (x), för en normalfördelad stokastisk variabel fås med kommandot 3 M (STIXBOX 3 ). Uppgift 3.7 Rita ut samma normalfördelningar som ovan men nu med hjälp av fördelningsfunktioner. ägg märke till hur olika värden på 1 och påverkar fördelningsfunktionerna M M M M P/*)Q.P J ( 8 ( ( ( 8 KN )'9!! 3.4 Andra fördelningar N )'9!E2 2C! N K!72 2C! N )Q!E25D12C! Andra MATAB-funktioner som genererar slumptal från olika fördelningar är listade i Appendix A. Ett generellt sätt att generera ett slumptal från en given fördelningsfunktion F(x) är att använda inversmetoden. Denna innebär att man löser ekvationen F(x), u där u är ett slumptal från en rektangelfördelning på intervallet (/ 1). Några fördelningar är lätta att invertera direkt, till exempel,.,..,.,.,,. Exponentialfördelning F(x) 1 e x a x a ln(1 u) Weibullfördelning F(x) 1 e (x a) c x a(. ln(1 u)) 1 c Extremvärdefördelning F(x) exp(. e (x b) a ) x b a ln(. ln(. u)) I andra fall, till exempel för normalfördelningen, måste inverteringen ske numeriskt. Det finns olika specialkonstruerade metoder för att simulera slumptal från sådana fördelningar. Det finns för normalfördelningen den så kallade Box-Müllertransformationen samt Marsaglias metod för generering av slumptal. Som beskrivs i kursboken är de relativa frekvenserna uppskattningar av ett antal areor under täthetsfunktionen. Om man har ett stort stickprov kan man välja en fin klassindelning och med ett histogram över de relativa frekvenserna få en god bild av täthetsfunktionens utseende. En naturlig fråga är om vi kan hitta någon statistisk standardfördelning som väl beskriver den variation som vi observerat? Vi skall undersöka detta på två sätt med hjälp av empirisk fördelningsfunktion och med hjälp av sannolikhetspapper, att grafiskt jämföra en fördelning baserad på data med en hypotetisk fördelning. De två olika sätten som vi beskriver är egentligen i princip samma sak Empirisk fördelningsfunktion Från en dags produktion av tegelstenar tog man slumpmässigt ut 125 stycken och mätte deras vikt (kg). Vikterna är lagrade i filen >. Uppgift 3.8 adda in data och gör ett histogram över vikterna. Beräkna även medelvärde 3 och standardavvikelse. Vilken fördelning tror du kan beskriva variationen i vikt? För att undersöka om du har rätt ska du jämföra den empiriska fördelningsfunktionen med din hypotetiska fördelningsfunktionen. Uppgift 3.9 Rita den empiriska fördelningsfunktionen för tegelstensvikterna med hjälp av följande MATAB kommandon " T"$@<?!7J > 8* "!7J,P O 9$3 "!7J Avläs från figuren vad medianvärdet är för vikterna, och vilken vikt som understigs av 9 av tegelstenarna. Använd kommandot för att se detaljer i plotten. 5

6 En fördelningsfunktion för normalfördelningen kan plottas med funktionen M (normal cumulative distribution function) men kräver värden på parametrarna 1 och i fördelningen. åll kvar den empiriska fördelningsfunktionen i figuren med 89 och rita in en normalfördelning 1,, med 1 och standardavvikelsen 5 i figuren. M *P/*)/".P'KJ Uppgift )/!! Identifiera väsentliga avvikelser mellan de två fördelningarna. Relatera dessa avvikelser till dem som du sett i de tidigare plottarna. 4 Summor av stokastiska variabler faltning 4.1 Symmetrisk fördelning Börja med att hitta på en diskret sannolikhetsfunktion med några möjliga utfall, till exempel den likformiga fördelningen över 1,2,...,6, dvs ett tärningskast. Mata sedan in denna sannolikhetsfunktion i form av en vektor. V O Nollan finns där för att det blir lättare att hålla reda på saker och ting om det första elementet i vektorn är sannolikheten för att utfallet är noll. Rita upp sannolikhetsfunktionen med kommandot. *P/ > (8* 7!3&? E! Funktionen > (8 ger antalet element i en vektor. Som du vet beräknas sannolikhetsfunktionen för en summa av två oberoende diskreta stokastiska variabler genom en diskret faltning (se kursboken). I MATAB finns en funktion, M T, som utför just en sådan faltning (faltning heter convolution på engelska). KU U M T M T M T */ 7!7J K1/ K9!7J / "!7J är blir alltså sannolikhetsfunktionen för en summa av åtta stycken oberoende stokastiska variabler med sannolikhetsfunktionen. Rita upp var och en av dessa nya sannolikhetsfunktioner med hjälp av (om du - kommandot kan du få plottarna i följd på ett överskådligt sätt). Nu kan vi också åstadkomma slumptal från fördelningen genom att generera åtta stycken slumptal från fördelningen och sedan lägga ihop dem. Om vi gör detta, till exempel, hundra gånger kan vi sedan rita ett stolpdiagram över de relativa frekvenserna och jämföra detta med sannolikhetsfunktionen för. I MATAB gör vi detta lätt och snabbt genom att först generera en 8 1-slumptalsmatris 1! (!, där vi kan betrakta varje kolonn som observationer av åtta stycken tärningskast. Ta, innan du går vidare, reda på hur D D ==8 $ 5DD9O 9! *P/ > 8* 9!(&!EJ Den andra inparametern till funktionen 8 $ är en vektor vars element anger klassmitten för respektive klass, och på detta sätt får vi samma indelning som i stolpdiagrammet över sannolikhetsfunktionen. Nu kan det vara dags att ta det lite lugnt ett slag och fundera över några frågor Uppgift 4.1 (a) ur stämmer fördelningen för de simulerade värdena överens med den teoretiska fördelningen för? (b) Varför förskjuts den resulterande fördelningen allt längre mot höger för varje faltning? (c) Varför blir sannolikhetsfunktionen för den resulterande fördelningen bredare för varje faltning? (d) Kan du skönja någon tendens beträffande resultaten av de successiva faltningarna? 6

7 < 4.2 Skev fördelning Utför sedan ett antal faltningar på samma sätt som ovan, men med en skev fördelning, till exempel K O (Vad skall vara?) Börja med att rita upp sannolikhetsfunktionen med hjälp av, så att du vet hur den ser ut. Uppgift 4.2 (a) Kan du se samma tendens här som du såg i föregående fall? (b) Om du svarat ja på ovanstående fråga, hur många faltningar tycker du behövs för att tydligt kunna se tendensen? Om du svarat nej, fortsätt med ett par faltningar till! Uppgift 4.3 väl av normalfördelning- (a) Approximeras en? (b) ur stort måste antalet termer n i summan vara, för att approximationenskall bli bra? (Pröva med summor av fler och färre stokastiska variabler, och notera det värde på n, för vilket du tycker att approximationen är bra.) (c) Beror approximationen till normalfördelningen på något mer än antalet termer i summan? Jämför med den inritade normalfördelningen Jämförelse med normalfördelningen Vi skall nu avsluta denna seans med en liten jämförelse med normalfördelningen. Det kan kanske verka en aning långsökt, men det skall så småningom visa sig, att det ligger goda skäl bakom. Räkna först ut väntevärde och standardavvikelse för en stokastisk variabel med sannolikhetsfunktionen. ; C; $3>3? P!N) C 7! C; 5*P9! & ;!N) 3K ) 7!! ger summan av elementen i en vektor, notationen ) 3K betyder elementvis kvadrering av en vektor och är kvadratroten. Vi kan nu jämföra sannolikhetsfunktionen med den normalfördelning N(4m/ 4) som har samma väntevärde och varians/standardavvikelse som. *P' > 8!(&9E "! 8 P/*)' P ( ; 8 Sist, men inte minst, några frågor! $>!! 5 Riskanalys Om igelkottar kilar över en väg vid n oberoende tillfällen och varje gång en igelkott passerar över vägen riskerar den att råka ut för en olycka med en sannolikhet som är 1- n, hur stor är då risken att någon av igelkottarna råkar ut för en olycka? Uppgift 5.1 (a) Simulera fram olycksrisken för några olika n. Du kan använda den färdigskrivna - filen $> (. (b) Beräkna olycksrisken då n, 1 exakt, med hjälp av oberoende händelser. (c) Om vi utsätter oss för små risker, så små att de nästan inte kan inträffa, många gånger, hur stor är då sannolikheten att vi någon gång råkar ut för denna olycka? Om du räknar med P(olycka en viss gång), 1- n, vad är då sannolikheten att olyckan inträffar någon gång av n? Vad händer då n? 7

8 6 Avslutning När man som ingenjör utför sina beräkningar, räcker det inte att de är formellt korrekta. Resultaten måste också sättas i relation till den omgivande verkligheten, tolkas i ett sammanhang. Väntevärde och varians är viktiga begrepp i sannolikhets- och statistikteorin, men de är abstraktioner som i varje enskilt fall måste tolkas för att få en mening. Den mekaniska analogin vid sannolikhets- eller täthetsfunktioner samt frekvenstolkningen är två möjliga vägar som illustrerats i första delen av denna laboration. I statistiken arbetar man ofta med summor av stokastiska variabler, inte minst när man bildar medelvärden. Avsnittet om faltning handlade just om detta, och de avslutande jämförelserna med normalfördelningen kan ses som en heuristisk härledning av centrala gränsvärdessatsen. Denna sats intar en central plats inom statistikteorin och förklarar också till viss del varför normalfördelningen är så ofta förekommande i statistiska sammanhang. I mitten av projektet fick du tillfälle att lite mera ingående studera några standardfördelningar och några av deras egenskaper. Varje fördelning har sina speciella egenskaper som gör den mer eller mindre användbar i olika sammanhang. För att kunna modellera den komplexa värld vi lever i behöver vi därför en bred repertoar av fördelningar, och vi skulle kunna underkasta var och en av de fördelningar som presenteras under kursens gång ett liknande specialstudium. Nu räcker inte den utmätta tiden till detta, och detta moment får därför samtidigt stå som ett exempel på hur man kan studera en fördelning och dess egenskaper för att kunna välja fördelning till ett specifikt problem. 7 Redovisning Rapport Projektet utförs i grupper om två eller tre personer och skall redovisas i form av en kort rapport koncentrerad kring de nyckelfrågor som är markerade med en bomb,. Figurer och histogram som kan förtydliga resonemang och slutsatser skall givetvis också vara med. Rapporten skall senast vara inlämnad den tid som meddelas på undervisningen. Du kan lämna den till antingen labbhandledaren eller sekreteraren. Om rapporten inte är inlämnad senast detta datum rättas den inte förrän nån gång i framtiden när vi har tid. Rättade rapporter delas ut på föreläsningarna och finns sedan i fack i korridoren på andra våningen i mattehuset. Icke godkända rapporter skall kompletteras och lämnas in igen så fort som möjligt. Utformningen av rapporten skall i görligaste mån följa instruktionerna i den utdelade promemorian angående redovisning av datorlaborationer. Rapporten skall bara omfatta väsentligheterna i projektet. Det finns delmoment och Uppgifter som är till för att stödja nyckelmomenten. Dessa behöver så klart ej redovisas i detalj och bör bara tas med för att stödja och förtydliga eventuella resonemang. 8

9 UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK REDOVISNING AV PROJEKT 1 OM FÖRDENINGAR OC RISKER MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3 Detta blad skall lämnas som försättsblad till rapporten. Checklista 1. Är alla momenten i projektet (inklusive förberedelseuppgifter) utförda? 2. ar rapporten blivit korrekturläst? Är språk- och skrivfel rättade? 3. Är figurer, tabeller och liknande försedda med figurtexter och tydlig numrering? 4. ar alla figurer storheter inskrivna på alla axlar? 5. Är de beräkningar som kan kontrollräknas kontrollräknade? 6. ar du gjort en rimlighetsbedömning av samtliga resultat? 7. ar eventuella orimliga resultat blivit vederbörligen kontrollerade och kommenterade? 8. Är den löpande texten väl strukturerad med tydliga avsnittsrubriker? 9. Är skriften försedd med Sammanfattning? Innehållsförteckning? Referenslista? Sidnumrering? Datum? 1. ar förutsättningar, förenklingar och gjorda antaganden tydligt redovisats? 11. Är din rapport läsbar utan tillgång till laborationshandledningen? 12. ar ni samarbetat med annan grupp? I så fall vilken? Är detta försättsblad med checklista fullständigt ifyllt? [ort och datum] [underskrifter] [namnförtydliganden] Ja Nej Rättarens anteckningar Rättat av Godkänt (datum)

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen

Läs mer

Projekt 1: Om fördelningar och risker

Projekt 1: Om fördelningar och risker LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Projekt 1: Om fördelningar och risker 1 Syfte I den första delen av detta projekt skall vi försöka

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen

Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR I, FMS 12, HT-8 Laboration 3: Sannolikhetsteori och simulering Syftet med den här laborationen

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Föreläsning 3, Matematisk statistik Π + E

Föreläsning 3, Matematisk statistik Π + E Repetition Kvantil Presentation Slumptal Transformer Inversmetoden Föreläsning 3, Matematisk statistik Π + E Sören Vang Andersen 13 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F3 1/19 Repetition

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 0, HT-0! "$&%')(+*,-./01.02% 1 Syfte Syftet med den här laborationen är att du ska bli

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Laboration 3: Parameterskattning och Fördelningsanpassning

Laboration 3: Parameterskattning och Fördelningsanpassning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

1 Sannolikhet enligt frekvenstolkningen Kast med tärning

1 Sannolikhet enligt frekvenstolkningen Kast med tärning Lunds univrsitet Matematikcentrum Matematisk statistik Biostatistisk grundkurs, MASB11 Laboration 2 HT-2014, 141212 Fördelningar och simulering Introduktion Syftet med laborationen är dels att vi skall

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

Hemuppgift 3 modellval och estimering

Hemuppgift 3 modellval och estimering Lunds Universitet Ekonomihögskolan Statistiska Institutionen STAB 13 VT11 Hemuppgift 3 modellval och estimering 1 Inledning Denna hemuppgift är uppdelad i två delar. I den första ska ni med hjälp av olika

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden

Läs mer

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan) Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas

Läs mer

Föreläsning 4, Matematisk statistik för M

Föreläsning 4, Matematisk statistik för M Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Hemuppgift 2 ARMA-modeller

Hemuppgift 2 ARMA-modeller Lunds Universitet Ekonomihögskolan Statistiska Institutionen STAB 13 VT11 Hemuppgift 2 ARMA-modeller 1 Inledning Denna hemuppgift är uppdelad i två delar. I den första ska ni med hjälp av olika simuleringar

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.

Läs mer

(a) Vilket av följande alternativ är sannolikheten för JACKPOT: P (A \ B), P A C \ B, P (A \ B), P A C \ B C?

(a) Vilket av följande alternativ är sannolikheten för JACKPOT: P (A \ B), P A C \ B, P (A \ B), P A C \ B C? Lösningar till tentamen i Militärteknik Grundkurs Metod 1OP103 Del: Statistik Datum: 2009-12-04, Tid: 8.30-12.30 Hjälpmedel: Kurslitteratur, egna anteckningar, miniräknare, dator (ej internettillgång)

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare Stockholms universitet November 2011 Data på annat sätt - I Stolpdiagram Data på annat sätt - II Histogram För kvalitativa data som nominal- och ordinaldata infördes stapeldiagram. För kvantitativa data

Läs mer

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig

Läs mer

13.1 Matematisk statistik

13.1 Matematisk statistik 13.1 Matematisk statistik 13.1.1 Grundläggande begrepp I den här föreläsningen kommer vi att definiera och exemplifiera ett antal begrepp som sedan kommer att följa oss genom hela kursen. Det är därför

Läs mer

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen

Läs mer

Hur måttsätta osäkerheter?

Hur måttsätta osäkerheter? Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

(x) = F X. och kvantiler

(x) = F X. och kvantiler Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i

Läs mer

Lärmål Sannolikhet, statistik och risk 2015

Lärmål Sannolikhet, statistik och risk 2015 Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på

Läs mer

Monte Carlo-metoder. Bild från Monte Carlo

Monte Carlo-metoder. Bild från Monte Carlo Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning

Läs mer

Stokastiska signaler. Mediesignaler

Stokastiska signaler. Mediesignaler Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Datorövning 3 Bootstrap och Bayesiansk analys

Datorövning 3 Bootstrap och Bayesiansk analys Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på två olika

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Datorövning 3 Bootstrap och Bayesiansk analys

Datorövning 3 Bootstrap och Bayesiansk analys Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-17 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT13 Laboration 2: Sannolikhetsteori och simulering Syftet med den här

Läs mer

Datorövning 1 Introduktion till Matlab Fördelningar

Datorövning 1 Introduktion till Matlab Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Weibullanalys. Maximum-likelihoodskattning

Weibullanalys. Maximum-likelihoodskattning 1 Weibullanalys Jan Enger Matematisk statistik KTH Weibull-fördelningen är en mycket viktig fördelning inom tillförlitlighetsanalysen. Den används ofta för att modellera mekaniska komponenters livslängder.

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR ED, FMS021, VT01 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Syftet med

Läs mer

Laboration 4: Lineär regression

Laboration 4: Lineär regression LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och

Läs mer

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska

Läs mer

1.1 Diskret (Sannolikhets-)fördelning

1.1 Diskret (Sannolikhets-)fördelning Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer