Kap 3: Diskreta fördelningar
|
|
- Anna-Karin Emma Engström
- för 8 år sedan
- Visningar:
Transkript
1 Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen 1
2 Exempel 1 Möjliga Resultat 1:a 2:a 3:a Antalet krona 1 T T T 0 2 T T H 1 3 T H T 1 4 T H H 2 5 H T T 1 6 H T H 2 7 H H T 2 8 H H H 3 Antar att vi är intresserad av antalet kronor som visas vid tre kastningar av ett mynt. Antalet möjliga utfall är: 2*2*2 8 H: krona T: klave ξantal krona vid tre kastningar av ett mynt 2
3 Exempel 1 forts Antalet krona x Sannolikheten av Utfall p(x) 0 1/ / Sannolikhets Histogram for for x 2 3/ / Totalt 8/
4 Exempel 2 Kasta 2 tärningar och låt: ξ summan av antal prickar vid 2 tärningskast x p(x) 2 1/36 3 2/36 4 3/36 5 4/36 6 5/36 7 6/36 8 5/36 9 4/ / / /36 4
5 Slumpvariabler s.v. En slumpvariabel (stokastisk variabel) är en numerisk beskrivning av utfallet vid ett slumpmässigt försök Diskret s.v. antar heltalsvärden Kontinuerlig s.v. som kan anta alla värden i något intervall (behandlas separat i nästa kapitel) Vi kommer att använda grekiska bokstäver (ofta ξ eller η) för att beteckna slumpvariabler och små bokstäver för att beteckna värden på slumpvariabler P(ξx)p(x) betyder alltså sannolikheten att slumpvariabeln ξ antar värdet x (observerat värde) 5
6 Exempel 3 Ex: I fallet med tärningskast: P(ξ1)1/6 På samma sätt gäller att P(ξ2)P(ξ3) P(ξ6)1/6 Detta kan sammanfattas med: P(ξx)1/6 Så vi säger att ξ: antalet prickar är en slumpvariabel 6
7 Sannolikhetsfördelningar Den modell som visar vilka värden en s.v. kan anta och sannolikheterna för dessa värden brukar kallas för variabelns sannolikhetsfördelning Sannolikhetsfördelningen p(x) för en diskret s.v. ξ definieras som p(x) P(ξx) P(ξ antar värdet x) Sannolikheten för ett utfall måste alltid vara mellan 0 och 1 Sannolikhetens summa är 1 Ex 3.2, sid 74 7
8 Fördelningsfunktion För en diskret stokastisk variabel ξ är fördelningsfunktionen F(x k ) P(ξ < x k ) p(x i ) Ex: Tärningskast x 1 <x 2 <x 3 < <x k <x k+1 < F(3) P(ξ < 3) P(ξ1)+P(ξ2)+P(ξ3) F(x) är en trappfunktion som växer från 0 till 1 Ex 3.5, sid 78 Sats 3 A, Ex 3.6 8
9 Väntevärde och varians Sannolikhetsfördelningar för olika s.v. kan skilja sig åt på många sätt. De kan t.ex. ha olika Lägesmått: väntevärde Spridningsmått: varians eller standardavvikelse 9
10 Väntevärde (medelvärde) Ett mått på en fördelnings läge är det förväntade värdet, eller väntevärdet. Om variabeln är diskret definieras variabelns väntevärde av ( ξ ) μ x p( x ) x p x ) + x p ( x ) +... x p ( x ) E i i + i 1 ( n n Ex: x p(x) 1/8 3/8 3/8 1/ Väntevärdet blir: E( ξ ) xi p( xi ) , Ex 3.13, sid 94 10
11 Varians Som mått på spridning används ofta variansen eller standardavvikelsen. Om variabeln är diskret definieras variansen av V ( ξ ) σ E( ξ μ ) ( x μ ) p( x) Enkel sätt att beräkna variansen V ( ξ ) E ( ξ ) μ x p( x) μ i i Standardavvikelsen för en stokastisk variabel definieras som σ Ex 3.15, sid 99 V ( ξ ) i i 11
12 Räkneregler för väntevärden och varianser Låt a och b vara konstanter och ξ och η slumpvariabler. Om η a + bξ E(a) a E(bξ) be(ξ) E(η) E(a+bξ) a+be(ξ) V(a) 0 V(bξ) b 2 V(ξ) V(η) V(a+bξ) b 2 V(ξ) 12
13 Likformig Fördelning Ω { 1, 2, 3,..., N } P(ξx) 1/N F(x) x/n E(ξ) x(1/n) (N+1)/2 Var(ξ) (N2-1)/12 Fördelningens parameter 13
14 Binomialfördelning Varje sannolikhetsproblem som innehåller följande egenskaper 1. Ett bestämt antal n försök skall utföras 2. Varje försök kan antingen lyckas eller misslyckas 3. Sannolikheten P(enskilt försök lyckas) är konstant 4. Den n försöken lyckas respektive misslyckas oberoende av varandra 14
15 Binomialfördelningen Om ett slumpförsök uppfyller de fyra punkterna och vi låter ξ : vara antalet lyckade försök så har slumpvariabeln ξ sannolikhetsfördelningen P( ξ x) n C x p x (1 p) n x n! x!( n x)! p x (1 p) n x för x 0,1,2,... n. där n C x n! x!( n x)! och n! n( n 1)( n 2)...(2)1och 0! 1. 15
16 Binomialfördelningen ξ: antalet lyckade försök eller individer med viss egenskap i stickprovet n: stickprovet p: sannolikheten att en viss händelse skall inträffa vid ett försök n och p kallas för binomialfördelningens parameter När vi vill tala om att en variabel ξ är binomialfördelad med parametrarna n och p använder vi ξ är Bin(n, p) 16
17 Exempel Låt ξ vara antal krona i n kast med ett mynt Sannolikheten att få krona i ett kast är p0.5 Tänkbara utfall är x0,1,..n Vilka sannolikheter är kopplade till dessa utfall? Det beskrivs av Binomialfördelningen Bin(n, p0.5) 17
18 Exempel Du kastar en tärning 60 gånger Vad är sannolikheten att få högst åtta ettor Låt ξ: antalet ettor vid 60 kast Att ξ är binomialfördelad följer av att 1. Det är på förhand bestämt att 60 kast skall göras, n60 2. Varje kast antingen ge en etta eller inte ge en etta 3. Sannolikheten är konstant 1/6 att få en etta 4. Att de olika försöken är oberoende är klart så länge tärningen kastas från någorlunda hög höjd 18
19 Exempel forts n 60 p 1/6 ξ är Bin(n60, p1/6) P(ξ 8)? P( ξ 8) 8 x 0 60 C x p x (1 p) 60 x 8 x 0 60! x!(60 x)! ()() x Beräkna själv och Kolla! 19
20 Väntevärdet och Variansen Väntevärdet: E(ξ)np Variansen: V(ξ)np(1-p) Ex: med tärningskast 60 gånger så har vi följande väntevärde och varians E(ξ) 60.(1/6) 10 V(ξ) 60.(1/6)(1-1/6) 50/6 20
21 Binomial-tabeller Att beräkna sannolikheter för binomialfördelade slumpvariabler innebär ofta att långa summeringar måste utföras. Sådant går bra om en dator med lämplig programvara finns tillgänglig Om inte så är fallet brukar tabeller över binomialsannolikheter finnas att tillgå En sådan tabell finns längs bak i boken 21
22 Ex: Antal pojkar i en fembarnsfamilj ξ antal pojkar Anta att varje barns kön bestäms oberoende av tidigare födslar och att sannolikheten för pojke är p0.5 Då är ξ binomialfördelat Bin(n5; p0.5) 22
23 De olika sannolikheterna blir P(ξ5) 5 C 5 p 5 (1-p) 0 1/32 (fem pojkar) P(ξ4) 5 C 4 p 4 (1-p) 1 5/32 (fyra pojkar) P(ξ3) 5 C 3 p 3 (1-p) 2 10/32 (tre pojkar) P(ξ2) 5 C 2 p 2 (1-p) 3 10/32 (två pojkar) P(ξ1) 5 C 1 p 1 (1-p) 4 5/32 (en pojke) P(ξ0) 5 C 0 p 0 (1-p) 5 1/32 (ingen pojke) Beräkna P(ξ 1) och P(ξ 3) med hjälp av tabellen 23
24 Hypergeometriska fördelningen Vi har en urna med 12 kulor, varav 4 vita och 8 svarta Om dragningarna sker med återläggning är antalet vita kulor ξ: Bin(4; 1/3) Men om dragningarna inte sker med återläggning beskrivs sannolikheten med en annan fördelning den s.k Hypergeometriska 24
25 Hypergeometriska fördelningen Sannolikheten att få ξ2 vita kulor i fyra dragningar utan återläggning är P ( ξ 2) 4 C C C 4 2 P(få 2 vita bland 4 valda) Välj 2 kulor bland de 4 vita Välj de resterande 2 bland de 8 svarta Välj 4 bland 12 25
26 Generell formel för Hypergeometriska fördelningen Där: ( P( ξ x) C )( N1 x N N1 n x N: populationsstorlek (8 svarta och 4 vita kulor 12) N1: element av en viss egenskap (4 vita kulor) n: stickprov (4 dragningar) x: element av en viss egenskap i stickprovet (2 vita kulor) N C n C ) Vi säger att ξ är hypergeometriskt fördelad 26
27 Alternativ form Ibland får man veta att andelen element med en viss egenskapen är p (4/12 i vårt exempel) Då blir N1Np och (N-N1)N(1-p) Formeluttrycket skrivs då P( ξ ( x) Np C Vi säger att ξ är Hyp(n, p, N) Ex. 3.7, sid 83 x )( N N ( 1 p) n x C n C ) 27
28 Väntevärdet och variansen Hypergeometriska fördelningen har följande väntevärde och varians Väntevärdet E(ξ) np Variansen V(ξ) np(1-p)((n-n)/(n-1)) 28
29 Approximation Ibland kan man approximera en hypergeometrisk fördelning med en binomialfördelning utan att göra alltför stort fel Allmänt gäller att om N är stort och kvoten n/n är liten Tumregel n/n< 0.10 så kan man göra följande approximation: Ex. 3.10, sid 87 ( N1C x)( N N1 N C n C n x ) x nc xp (1 p) n x 29
30 Exempel I en urna finns 1000 kulor av vilka 30% är vita och resten svarta Man väljer (och utan återläggning) 10 kulor ur urnan Vad är sannolikheten att man får 4 vita kulor Lösning: Då N är stort som 1000 och man bara väljer ut 10 kulor så ändras inte sammansättningen av svarta och vita kulor nämnvärt när man väljer ut en kula i taget Vi kan approximativt säga att i varje dragning finns 30% vita kulor Vi tänker oss då att vi gör 10 oberoende upprepningar, där p 0.3 i varje dragning ξ är Bin(n10, p0.30) Beräkna själv! 30
31 Poissonfördelningen Poissonfördelningen uppkommer när man vill studera antal gånger en speciell händelse inträffar inom en given tidsperiod Ex: om det i genomsnitt kommer 3 bilar till en korsning varje minut, hur stor är sannolikheten att det under en viss minut kommer, säg 5 bilar? Poissonfördelningen kan också användas om sannolikheten för lyckat försök är liten och (mycket) stort antal försök Ex: antalet insjuknade i ovanlig sjukdom, dödsfall pga. viss olyckshändelse etc. 31
32 Poissonfördelningen Så här kan vi beskriva poissonfördelningen på ett matematiskt sätt P ( ξ x) x λ e x! λ Där: µ: genomsnittliga antalet händelser under tidsintervallet x: antalet lyckade e: konstant 2,71828 Vi säger att ξ är Po(λ) 32
33 Väntevärdet och variansen Poissonfördelningen har följande väntevärde och varians E(ξ) np λ V(ξ) np λ E(ξ) V(ξ) λ 33
34 Exempel En telefonväxel som tar emot i genomsnitt 3 samtal per minut Vad är sannolikheten för 1) En minut utan samtal? Lösning: Låt ξantal samtal per minut ξ är Po(λ3) P( ξ 0) 3 0 e 0! 3 e
35 Exempel forts 2) Två eller fler samtal på en minut? Lösning: P ( ξ > 1) 1 P ( ξ 1) 1 P ( ξ 0 ) P ( ξ 1) e 1! e 1! Poissonsannolikheter kan också beräknas med hjälp av tabeller 35
36 Sammanfattning Binomial: Dragning med återläggning, samma sannolikhet för lyckat utfall varje gång Hypergeometrisk: Dragning utan återläggning, olika sannolikhet varje gång Poisson: Liten sannolikhet för gynnsamt utfall och (mycket) stort antal försök Approximationer, fig. 3.7, sid 87 36
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Läs mer4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Läs merResultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Läs merFinansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Läs merVeckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Läs merVeckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
Läs mer1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Läs merF6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
Läs merFinansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Läs merKap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Läs merSF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
Läs merFöreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
Läs mer4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Läs merF5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Läs merKapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Läs merSF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Läs mer1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Läs merSF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Läs mer1 Föreläsning IV; Stokastisk variabel
1 FÖRELÄSNING IV; STOKASTISK VARIABEL 1 Föreläsning IV; Stoastis variabel Vi har tidigare srivit P (1, 2, 3, 4, 5) = P (C) för sannoliheten för att få 1, 2, 3, 4 eller 5 vid ett tärningsast. Vi sall använda
Läs mer4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
Läs merFöreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Läs merKapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi
Läs merOberoende stokastiska variabler
Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen
Läs merSOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.
Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Läs merFöreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Läs merSF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Läs merTentamen LMA 200 Matematisk statistik,
Tentamen LMA Matematisk statistik, Tentamen består av åtta uppgifter motsvarande totalt poäng. Det krävs minst poäng för betyg, minst poäng för 4 och minst 4 poäng för. Examinator: Ulla Blomqvist, ankn
Läs merJörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Läs merMatematisk statistik, LMA 200, för DAI och EI den 25 aug 2011
Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:
Läs merFinansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga
Läs merVåra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Läs merFÖRELÄSNING 3:
FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Läs merFöreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
Läs merÖvning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Läs merBIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
Läs merSF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
Läs merTentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
Läs merTMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Läs merFormel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Läs mer1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter
Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden
Läs mermodell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet
Läs merSamplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Läs merExempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
Läs merKap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Läs merFöreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Läs merF9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Läs merF2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
Läs merIntroduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
Läs mer4. Stokastiska variabler
4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del I
MS-A Grundkurs i sannolikhetskalkyl och statistik Exempel, del I G Gripenberg Aalto-universitetet januari G Gripenberg (Aalto-universitetet) MS-A Grundkurs i sannolikhetskalkyl och statistikexempel, del
Läs merFöreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs merKapitel 5 Multivariata sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala
Läs merStokastiska Processer F2 Föreläsning 1: Repetition från grundkursen
Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen Denna föreläsning kommer mest att vara en repetition av stoff från grundkursen. Längden på detta dokument kan tyckas vara oproportionerligt
Läs merRepetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Läs merCentrala gränsvärdessatsen (CGS). Approximationer
TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination
Läs merMatematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Läs merFöreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
Läs merLMA522: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
Läs merMatematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Läs merMer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
Läs merLösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen
Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll
Läs merNågra extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
Läs merF8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Flerdimensionella Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Flerdimensionella Ett slumpförsök kan ge upphov till flera (s.v.): kast med
Läs merLMA521: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
Läs merTMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Läs merFÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
Läs merTentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2
Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs merSvar till gamla tentamenstal på veckobladen
Svar till gamla tentamenstal på veckobladen Data/Eletro 4 A Patienten är ett allvarligt fall B Patienten är under 4 år C Någon av patientens föräldrar har diabetes 8 + + + + + 8 + a) P(A).4 och P(C).8
Läs merMVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Läs merTvå parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
Läs merRepetition och förberedelse. Sannolikhet och sta.s.k (1MS005)
Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) Formellsamling och teori Nästa varje ekva.on som vi använder under kursen finns I samlingen. Tricket i examen är hica räc metod/fördelning.ll
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Läs merLMA521: Statistisk kvalitetsstyrning
Föreläsning 1 Dagens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från boken.
Läs merKapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II
Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs
Läs merDetta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.
Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x
Läs merTentamen LMA 200 Matematisk statistik, data/elektro
Tentamen LMA 00 Matematisk statistik, data/elektro 039 Tentamen består av åtta uppgiter motsvarande totalt 50 poäng. Det krävs minst 0 poäng ör betyg 3, minst 30 poäng ör 4 och minst 40 ör 5. Examinator:
Läs merStokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable
Läs merhistogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Läs merKurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Läs merSvar till gamla tentamenstal på veckobladen
Svar till gamla tentamenstal på veckobladen Veckoblad : Data/Eletro 54 A = Patienten är ett allvarligt fall B = Patienten är under 4 år C= Någon av patientens föräldrar har diabetes 8 + + + 5 + 5 + 8 +
Läs merFöreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Läs merLMA522: Statistisk kvalitetsstyrning
Föreläsning 1 Föreläsningens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från
Läs merDiskreta slumpvariabler
1/20 Diskreta slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/1 2013 2/20 Dagens föreläsning En maskin gör fel ibland! En man berättar att han har minst en
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,
Läs merLaboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl
Läs mer