Svar till gamla tentamenstal på veckobladen
|
|
- Lisbeth Abrahamsson
- för 8 år sedan
- Visningar:
Transkript
1 Svar till gamla tentamenstal på veckobladen Data/Eletro 4 A Patienten är ett allvarligt fall B Patienten är under 4 år C Någon av patientens föräldrar har diabetes a) P(A).4 och P(C) d.v.s. P(A) P(C) medan P(A C).8 d.v.s. A och C är beroende b) ) P(A C B C + ) P(patienten är ett lindrigt fall över 4 år).3 ) P(A C B C ) P(patienten är inte ett allvarligt fall under 4 år) P(A B)..9 3) P(A C B C C ) P(patienten är ett lindrigt fall under 4 år vars föräldrar inte har diabetes). Data 989 herrar och n damer ) varje herre kysser n damer antal kyssar n ) antal handskakningar mellan herrar n antal handskakningar mellan damer Antal kyssar antal handskakningar n n + 4 n ( n ) n + 3n + (n - n) n - 3n + n 3 96 ± n 3 ± n och n OBS! Två svar 4
2 Data/Eletro 733 A: Den svarta tärningen kommer upp med 6 ögon. B: Den vita tärningen kommer upp med 6 ögon. C: Summan av antal ögon på den svarta och den vita tärningen är udda. a) Om A och B är oberoende så gäller att P(A B) P(A) P(B) Ovannämnda situation kan illustreras genom att man ritar in de olika tal-paren i ett spridningsdiagram. kast med tärning tärningarna visar vilka antal ögon som tärning och har. tärningarna visar 6 ögon på både tärning och kast med tärning P(A) P(B) 6 P(A B) (enligt ovanstående figur) 36 P(A) P(B) P(A B) A och B är oberoende b) Denna situation kan illustreras av nedanstående figur kast med tärning tärningarna visar vilka antal ögon som tärning och har. tärningarna visar när summan av antal ögon är udda kast med tärning Uppgiften fortsätter på nästa sida
3 fortsättning uppgift: P(A) 6 8 P(C) 36 P(A C) (fås mha den översta raden svarta prickar i ovanstående figur) 36 3 P(A) P(C) 6 P(A C) A och C är oberoende c) Är de tre händelserna A, B och C oberoende eller beroende av varandra? P(A B C) eftersom det inte finns någon situation där både tärning och har 6 ögon samtidigt som summan av antal ögon skall vara udda. P(A) P(B) P(C) P(A B C) A, B och C är beroende. Bygg 99 Låt F vara händelsen att vi erhållit det felaktiga myntet. P(F). P(F C ).99. a) Låt K vara händelsen att vi erhållit en klave i ett kast. Sannolikheten för K blir givetvis olika beroende på vilket mynt vi har valt. Vi får alltså en betingad sannolikhet. Vi antar att mynten är symmetriska. Alt : Myntet, som vi har valt är inte det felaktiga. P(K).. Men uppgiften bestod i att vi skulle studera tre kast. Variabeln antal klavar är binomialfördelad. Sannolikheten att få tre klavar i tre kast när vi använder ett felfritt mynt blir 3 P(K K K 3 )... 3 Alt : Vi har valt det felaktiga myntet. P(K).. Eftersom vi erhåller klave varje gång vi kastar så blir även sannolikheten för att erhålla tre klavar i tre kast P(K K K 3 ). Vi kombinerar båda dessa resultat för att få sannolikheten att med ett slumpmässigt valt mynt få tre klavar i tre kast. P(K K K 3 ) P(K K K 3 F C ) P(F C ) + P(K K K 3 F) P(F) Vi kan nu beräkna den efterfrågade sannolikheten genom att använda Bayes sats: P(F K K K 3 ) P(K K K3 F) P(F)...7 P(K K K ).337 3
4 P(K... Kn F) P(F) b) P(F n klavar i n kast) P(K... Kn).. C C P(K... K F) P(F) + P(K... K F ) P(F ) n n..... n > >.9(.. +. n.99)..9 >. n.89. >. n n ln. > ln.334 n ( ) > n > dvs minst tio kast Bygg 99 a) Beräkna sannolikhetsfördelningen för A:s vinst. Antal kast, η P(ηy) Banken betalar ut A:s vinst, ξ 3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) P(ηy) P(ξ) 7 Förväntad vinst: E(ξ)] i P( ξ i ) dvs en förlust på c:a 4 franc. b) Var(ξ) i P( ξ i ) [E(ξ)] ((-) ) ( ) S(ξ) c) spelaren vinst: ζ ξ + ξ +.+ ξ är ungefär N( (-3.93);.69) N(-96.7; ) P(bankens vinst >) P(ζ ) P(Z ( 96.7) ) Φ(.)
5 Maskin 987 ξ antal bilar ξ Po(λ bilar/ min) a) Räkna om λ till antal bilar/ minuter. λ.667 bilar/ min P(ξ ) P(ξ ) e (! ).4.496! Maskin e a) f ()d c d + c e d c + c 6 4 c + c ( ) c c. 6 6 b) : F() f (t)dt < < : t F() f(t)dt dt +. ( t )dt.. ( + ).7( + ) : F() 6t f (t)dt dt +. ( t)dt +. e dt 6t 6 t e e ( + ) +.( + ).e Fördelningsfunktionen: F().7(.e 6 + ) + för för < < för c) P(. < ξ) + P(ξ <.) P(ξ <.) + P(ξ <.).e + +.7( + ). e [ ]. [ ].
6 Bygg 99 ξ i är Ep(λ i ) F() - i e λ för i,, 3 där λ λ. och λ 3 del och : - F() e del 3: - F() e P(systemet fungerar) P(del fungerar del fungerar del 3 fungerar) (oberoende) Kemi 46 a) λ. samtal / min λ. samtal / 3 min P(ξ ) e -...3! b) λ. samtal / min λ. samtal / min P(ξ > ) P(ξ ) e -.. (! ) !! c) η tiden mellan två samtal η Ep(λ. samtal / min) P(ξ > ) P(ξ ) ( e -. ) e Bygg 99 ξ är N(µ, ). 99% 74 µ P(ξ>74).99 P(ξ>74) - P(ξ 74) P(Z 74 µ ).99 P(Z 74 µ 74 µ ) µ
7 Väg o vatten 3 a) ξ pris på brödet ξ P(ξ ).8 8. E(ξ) :6 E(Vinst/bröd) 7:6 :-- :6 kr b) ξ P(ξ ) E(ξ) :-- E(Vinst/bröd) 7:-- :-- :-- kr b) ξ P(ξ ) 8 p 8 p E(vinst/bröd) 8p + 8( p) Om man tolkar frågan så att man måste gå med plus dvs att E(ξ) > :-- så får man lösningen 8p + 8 8p p 7 > p >.7 dvs, det kan innebära att det räcker att efterfrågan första dagen är lite mer än 7%. Om man tolkar frågan så att man måste gå med få ett bättre resultat än vi d den ordinarie försäljningen dvs att E(ξ) > 7:6 så får man lösningen 8p + 8 8p p 7 :6 p.96 Efterfrågan första dagen måste öka till 96% av tillverkningen. Data 986 σ 49 P P ( µ < ) P( < µ < ) ( Z <.7) P( Z <.7) P Z < 7 8 P Z < 7 8
8 Data 99 A a b b b 4 9 A t A n A t b y y y () a + 98b + b 7 () 98a + 93b + 38b 44 (3) a + 38b + b 36 () (3) () 9 (3) 3a + 6b 3 6a + 8b 73 (4) () 3a + 6b 3 6a + 8b 73 () (4) 8b 3 b 3.7 a 3 (3 ) b y b) Tolkning av koefficienterna a är det antal studietimmar man skulle ha som nyfödd pojke. (nonsens) b 3.7 är den genomsnittliga skillnaden i antal studietimmar mellan två studenter med ett års åldersskillnad när båda studenterna är av samma kön. b.8 är den genomsnittliga skillnaden i antal studietimmar mellan män och kvinnor i samma åldersklass.
9 Kemi 986 a) Steg H : µ 4. H : µ > 4. Steg α. %.64 Steg 3 Välj test variabeln z µ σ n Steg 4 Urval gav z Steg H förkastas. Tillverkarens påstående är troligtvis inte korrekt. b) µ 4. µ 4. Kritiskt värde uttryckt i normalförde ln ingen med µ 4. och σ. * *.. β P( X < µ 4. ) P z< ( 4 ) 8. P z <.. 6 Styrkan β. 998
Svar till gamla tentamenstal på veckobladen
Svar till gamla tentamenstal på veckobladen Veckoblad : Data/Eletro 54 A = Patienten är ett allvarligt fall B = Patienten är under 4 år C= Någon av patientens föräldrar har diabetes 8 + + + 5 + 5 + 8 +
Tentamen i Dataanalys och statistik för I den 28 okt 2015
Tentamen i Dataanalys och statistik för I den 8 okt Tentamen består av åtta uppgifter om totalt poäng. Det krävs minst poäng för betyg, minst poäng för och minst för. Eaminator: Ulla lomqvist Hjälpmedel:
Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2
Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten
Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011
Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:
Övningstentamen 1. c) Beräkna sannolikheten att exakt en av A eller B inträffar (6 poäng)
Övningstentamen Uppgift : Vid ett experiment kan en händelse A, en händelse B eller både A och B inträffa. I en serie om 00 försök har man sammanställt följande statistik: i 90 fall har minst en av A eller
Tentamen i matematisk statistik för BI2 den 16 januari 2009
Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0
Övningstentamen Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet de att Bill träffar tavlan med sannolikheten.7
Tentamen i statistik och sannolikhetslära för BI2 den 27 maj 2010
Tentamen i statistik och sannolikhetslära för BI den 7 maj 010 Uppgift 1: rik och Simon har gått till puben tillsammans. De beslutar sig för att spela dart (vilket innebär att man kastar pil mot en tavla).
Övningstentamen i matematisk statistik
Övningstentamen i matematisk statistik Uppgift : Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens Någon förälder med
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA Matematisk statistik, Tentamen består av åtta uppgifter motsvarande totalt poäng. Det krävs minst poäng för betyg, minst poäng för 4 och minst 4 poäng för. Examinator: Ulla Blomqvist, ankn
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 005 Uppgift 1: Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens
Övningstentamen 1. A 2 c
Övningstentamen Uppgift : På en arbetsplats skadades % av personalen under ett år. 6% av alla skadade var män. % av alla anställda var kvinnor. Är det manliga eller kvinnliga anställda som löper störst
Tentamen LMA 200 Matematisk statistik, data/elektro
Tentamen LMA 00 Matematisk statistik, data/elektro 039 Tentamen består av åtta uppgiter motsvarande totalt 50 poäng. Det krävs minst 0 poäng ör betyg 3, minst 30 poäng ör 4 och minst 40 ör 5. Examinator:
Övningstentamen 2 Uppgift 1: Uppgift 2: Uppgift 3: Uppgift 4: Uppgift 5: Uppgift 6: i ord
Övningstentamen Uppgift : I en kvalitetskontroll är det fyra olika fel A, B, C och D som kan förekomma oberoende av varandra där P(A) 0.03, P(B) 0.05, P(C) 0.07 och P(D) 0.. a. Beräkna sannolikheten att
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =
Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.
Veckoblad 2. Kapitel 2 i Matematisk statistik, Blomqvist U.
Vecoblad 2 Kaptel 2 Matemats statst, Blomqvst U. ya begrepp: oberoende händelser, betngad sannolhet, Bayes formel.. är man sall lösa problem, där sntt mellan händelser ngår, an det ofta vara tll hjälp
en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.
February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen
Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen Denna föreläsning kommer mest att vara en repetition av stoff från grundkursen. Längden på detta dokument kan tyckas vara oproportionerligt
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Föreläsningsanteckningar till kapitel 8, del 2
Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator
Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen
Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Oberoende stokastiska variabler
Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen
Tentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
Föreläsningsanteckningar till kapitel 9, del 2
Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0
Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.
Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-06-03 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
1 Föreläsning V; Kontinuerlig förd.
Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Övningstentamen i kursen Statistik och sannolikhetslära (LMA120)
Övningstentamen i kursen Statistik sannolikhetslära (LMA0). Beräkna ( ) 04.. Malin har precis yttat, ska skruva ihop sitt rektangulära skrivbord igen. Bordet har ett ben i varje hörn, har två långsidor
Matematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A
Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Diskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Betingad sannolikhet och oberoende händelser
Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2
Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett
Uppgift a b c d e Vet inte Poäng
TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Tentamen i Sannolikhetslära och statistik Kurskod S0008M
Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson
Övningstentamen i matematisk statistik för kemi
Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 ( uppgifter) Tentamensdatum 2018-08-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Niklas Grip Jourhavande
Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.
Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson,
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, 5--9 Lösningförslag skriftlig hemtentamen i Fortsättningskurs i statistik, moment, Statistisk Teori, poäng. Deltentamen : Sannolikhetsteori
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
Lösningar till tentamen i Matematisk Statistik, 5p
Lösningar till tentamen i Matematisk Statistik, 5p LGR98 27 oktober, 2001 kl. 9.00 13.00 Kursansvarig: Eric Järpe Maxpoäng: 30 Betygsgränser: 12p: G, 22p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling
import totalt, mkr index 85,23 100,00 107,36 103,76
1. a) F1 Kvotskala (riktiga siffror. Skillnaden mellan 3 och 5 månader är lika som skillnaden mellan 5 och 7 månader. 0 betyder att man inte haft kontakt med innovations Stockholm.) F2 Nominalskala (ingen
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson och
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-08-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
TENTAMEN I MATEMATISK STATISTIK 19 nov 07
TENTAMEN I MATEMATISK STATISTIK 9 nov 7 Ten i kursen HF ( Tidigare kn 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Ten i kursen 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: 3:5-7:5 Lärare: Armin Halilovic
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson och
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-01-15 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: A Jonsson, J Martinsson,
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-03-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Niklas
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
TAMS79: Föreläsning 1 Grundläggande begrepp
TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare
1 Föreläsning IV; Stokastisk variabel
1 FÖRELÄSNING IV; STOKASTISK VARIABEL 1 Föreläsning IV; Stoastis variabel Vi har tidigare srivit P (1, 2, 3, 4, 5) = P (C) för sannoliheten för att få 1, 2, 3, 4 eller 5 vid ett tärningsast. Vi sall använda
Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)
Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) Formellsamling och teori Nästa varje ekva.on som vi använder under kursen finns I samlingen. Tricket i examen är hica räc metod/fördelning.ll
Grundläggande matematisk statistik
Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
F2 SANNOLIKHETSLÄRA (NCT )
Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive
Exempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-03-21 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Inge
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
15.1 Mer om betingad sannolikhet
15.1 Mer om betingad sannolikhet Exempel 1. En vanlig tärning kastas Låt A tärningen visar 1 Låt B tärningen visar ett udda poängantal Bestäm P(A). Bestäm P(A B), det vill säga: Hur stor är sannolikheten
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
Inlämningsuppgift-VT lösningar
Inlämningsuppgift-VT lösningar A 1. En van Oddset-spelare har under lång tid studerat hur många mål ett visst lag gör i ishockeymatcher och vet att sannolikheterna beskrivs av följande tabell: Mål 0 1
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Centrala gränsvärdessatsen (CGS). Approximationer
TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN 016-03-1 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall vara
FÖRELÄSNING 3:
FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data