import totalt, mkr index 85,23 100,00 107,36 103,76
|
|
- Johan Danielsson
- för 5 år sedan
- Visningar:
Transkript
1 1. a) F1 Kvotskala (riktiga siffror. Skillnaden mellan 3 och 5 månader är lika som skillnaden mellan 5 och 7 månader. 0 betyder att man inte haft kontakt med innovations Stockholm.) F2 Nominalskala (ingen entydig ordningsföljd, svårt att avgöra vilket som är bäst och sämst av de tre första alternativen som alla leder till att idén genomförs) F3 Ordinalskala (entydig ordningsföljd) F4 Nominalskala (ingen speciell ordningsföljd) b) Öppna frågor ger större möjlighet för respondenten att helt få fram sina åsikter, och kan ge tankar som forskaren själv inte tänkt på, slutna frågor är enklare att analysera med kvantitativa metoder. 2. a) b) c) ( ) d) ( ) 3. a) utfallet på den ena variabeln påverkar inte sannolikheten för de olika utfallen på den andra. (De betingade sannolikheterna är då lika med de obetingade sannolikheterna) b) En variabel där utfallen är en siffra. Enbart vissa värden är möjliga, det vanliga är att den inte kan anta decimaltal utan enbart heltal. c) En sannolikhetsfördelning som uppkommer om man gör ett urval ur en population och räknar antalet i urvalet som har en viss egenskap import totalt, mkr index 85,23 100,00 107,36 103,76 (Dividera alla siffror med och multiplicera med hundra)
2 5. a) z = = 2,5 2 P(X < 500) = P(z < 2,5) = P(z > 2,5) = 0,5 P(0 < z < 2,5) = 0,5 0,4938 = 0,0062 b) Medelvärdets sannolikhetsfördelning har samma medelvärde som ursprungspopulationen men standardavvikelsen är lika med: σ x = σ n = 2 5 = 0, z = 0,8944 = 5,59 P(X < 500) = P(z < 5,59) = P(z > 5,59) Sannolikheten att z är större än 5,59 är så liten att vi inte ens kan hitta den i tabellen. 6. Ja A och B är beroende. Sannolikheten att A inträffar är lägre om vi vet att B har inträffat. Den betingade sannolikheten för A givet B är bara 0,2 medan den obetingade sannolikheten för A är 0,3. Sannolikheten för A påverkas av om B inträffar. Nej A och C är oberoende. Sannolikheten för A är samma oavsett om C inträffar eller ej. (Och sannolikheten för C är samma oavsett om A inträffar eller ej. P(A och B) = P(A) P(B A) = 0,3 0,2 = 0,06 P(A eller B) = P(A) + P(B) P(A och B) = 0,3 + 0,3 0,06 = 0,54
3 7. a) Hypotestest av medelvärden från två olika populationer för att se om medelvärdet för ökningen i hjärtfrekvens avviker mellan de två grupperna. Detta test behöver ni inte utföra men skulle man göra det så blir det enligt följande: H 0 : μ 1 = μ 2 H 1 : μ 1 μ 2 Teststatistika: t = X 1 X 2 Frihetsgrader: df = s 1 2 n1 + s 2 2 n2 ( s 1 2 n1 + s 2 2 n2 ) 2 ( s n1 ) s 2 2 ( n1 1 + n2 ) n2 1 2 = ( ) ( ) 10 ( ) 40 1 = ( )2 = (4,525)2 ( ) ( 40 )2 (2,025) 2 + (2,5) Kritiskt värde1,991 (dubbelsidigt test 5 % signifikansnivå) t = ,525 = 10 2,13 = 4,7 = 20,47 0,105+0,160 = 20,47 0,265 = 77,14 Eftersom t är mindre än det negativa kritiska värdet förkastas H 0. Intag av salt påverkar ökningen av hjärtfrekvensen. 8. b) Hypotestest av medelvärdeför en population, testa om medelvärdet i gruppen som ätit salt är större än noll. (Eller egentligen ett paired t-test, ursprungsdatan här var hjärtfrekvens före och efter landning men differenserna är redan beräknade) c) H 0 : μ 0 H 1 : μ > 0 Teststatistika: t = X μ s n Frihetsgrader : 39 (40-1) Kritiskt värde: 1,685 (enkelsidigt text 5 % signifikansnivå) t = 7 0 = 4, Eftersom 4,91 >1,685 kan nollhypotesen förkastas. Vi kan dra slutsatsen att hjärtfrekvensen ökar även om man äter salt. a) H 0: Män och kvinnor lägger ner lika mycket tid på sina elabonnemang. H 1: Män lägger mer eller mindre tid på sina elabonnemang än vad kvinnor gör. b) Eftersom p värdet är lägre än 5% kan vi förkasta nollhypotesen. Män och kvinnor skiljer sig åt. Eftersom män hr högre medelrangtal lägger männen ner mer tid på sina elabonnemang. c) Teckenrangtesten använder vi för att jämföra två variabler och se vilken som är störst. Här har vi en variabel som vi jämför i två olika grupper.
4 9. a) modell 1 interceptet tolkas ej då inga kommuner har noll i folkmängd, medelålder eller invånare per kvadratkilometer, (och förmodligen inte på de andra båda heller) folkmängd 2010 är inte signifikant eftersom pvärdet (0,461) överstiger signifikansnivån och tolkas därför ej. Medelålder 2010 är signifikant eftersom pvärdet (0,000) är lägre än signifikansnivån signifikansnivån, koefficientens värde -0,971 tolkas som att inflyttningen är lägre till kommuner med högre medelålder. Om medelåldern ökas med ett år minskar nettoinflyttningen med 0,97 personer per tusen invånare givet oförändrade värden på övriga oberoende variabler. Invånare per kvadratkilometer 2010 är inte signifikant eftersom pvärdet (0,079) överstiger Antal studenter per 100 invånare 2010 är inte signifikant eftersom pvärdet (0,405) överstiger Genomsnittlig andel arbetslösa 2010 är inte signifikant eftersom pvärdet (0,127) överstiger Modell 2 interceptet tolkas ej då inga kommuner har noll i folkmängd, medelålder eller invånare per kvadratkilometer, (och förmodligen inte på de andra båda heller) folkmängd 2010 är signifikant såväl i sin grundform som kvadrerad eftersom pvärdena (0,003 och 0,004) är lägre än signifikansnivån. Den vanliga variabeln är positiv och säger att nettoinflyttnignen ökar när folkmängden ökar, den kvadrerade är negativ och säger att ökningen av netttoinflyttningen minskar om kommunen blir större. För de riktigt stora kommunerna minskar nettoinflyttningen om folkmängden blir större.(man kan visa att nettoinflyttningen är störst i kommuner med drygt invånare) Medelålder 2010 är signifikant eftersom pvärdet (0,000) är lägre än signifikansnivån, koefficientens värde -0,797 tolkas som att inflyttningen är lägre till kommuner med högre medelålder. Om medelåldern ökas med ett år minskar nettoinflyttningen med 0,8 personer per tusen invånare givet oförändrade värden på övriga oberoende variabler.
5 Invånare per kvadratkilometer 2010 är signifikant eftersom pvärdet (0,013) är lägre än signifikansnivån, koefficientens värde 0,002 tolkas som att inflyttningen är lägre till kommuner med fler invånare per kvadratkilometer. Om invånare per kvadratkilometer ökar med en person per kvadratkilometer ökar nettoinflyttningen med 0,002 personer per tusen invånare givet oförändrade värden på övriga oberoende variabler. Antal studenter per 100 invånare 2010 är inte signifikant eftersom pvärdet (0,443) överstiger Genomsnittlig andel arbetslösa 2010 är signifikant eftersom pvärdet (0,032) är lägre än signifikansnivån, koefficientens värde -0,406 tolkas som att inflyttningen är lägre till kommuner med hög arbetslöshet. Om arbetslösheten ökar med en procentenhet minskar nettoinflyttningen med 0,406 personer per tusen invånare givet oförändrade värden på övriga oberoende variabler. b) Om inflyttningen är hög ökar befolkningen i storlek. Om i första hand yngre personer flyttar kommer medelåldern att påverkas av nettoinflyttningen, i kommuner med positivnettoinflyttning sjunker medelåldern. I kommuner med negativ nettoinflyttning ökar medelåldern. Om man har en positiv nettoinflyttning kommer invånare per kvadratkilometer att öka. Om studenter utgör en stor del av de som flyttar påverkas antalet studenter av nettoinflyttningen Om de som flyttar är mer eller mindre attraktiva på arbetsmarknaden än de som inte flyttar finns en påverkan på arbetslösheten från nettoinflyttningen. Så här kan vi nog ha problem med endogenitet på i stort sett alla variabler. Så vi kan nog inte tolka koefficienterna som kausala samband på det sätt vi gjorde i a) utan enbart som en samvariation. c) Modell 1 antar enbart linjära samband medan modell 2 antar ett icke linjärt samband mellan folkmängd och nettoinflyttning. Eftersom folkmängd i kvadrat är signifikant har vi nog ett ickelinjärt samband mellan folkmängd och nettoinflyttning, om städer blir för stora blir de kanske mindre attraktiva att bo i alternativt det blir svårare att få tag i bostad där. Detta talar för modell 2. Intressant här är att en rad andra variabler blir signifikanta först när vi modeller sambandet mellan folkmängd och nettoinflyttning som icke linjärt, i det här fallet har valet av modell därför ovanligt stor betydelse. Om vi antar att folk vill flytta till Stockholm för att det är lätt att få jobb där men tvekar pga att Stockholm blivit för stort och att det därmed är svårt att få bostad, kan det förklara varför arbetslösheten enbart blir signifikant i modell 2 där vi tar hänsyn till att nettoinflyttningen minskar i riktigt stora städer givet en viss nivå på arbetslösheten. d) b ± t s b 0,406 ± 1,96 0,189 0,406 ± 0,37 0,78 < β < 0,04
1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c)
1a) F1 och F3 nominalskala, enbart olika saker F kvotskala, Riktiga siffror, 0 betyder att man inte finns och avståndet mellan två värden är exakt definierat F4 och F5 ordinalskala, vi kan ordna svaren
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs merFråga nr a b c d 2 D
Fråga nr a b c d 1 B 2 D 3 C 4 B 5 B 6 A 7 a) Första kvartilen: 33 b) Medelvärde: 39,29 c) Standardavvikelse: 7,80 d) Pearson measure of skewness 1,07 Beräkningar: L q1 = (7 + 1) 1 4 = 2 29-10 105,8841
Läs merordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng)
1 F1 ordinalskala F2 kvotskala F65A nominalskala F65B kvotskala F81 nominalskala (motivering krävs för full poäng) b) Variabler som används är F2 och F65b. Eftersom det är kvotskala på båda kan vi använda
Läs mer1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)
1. a) F1(Sysselsättning) F2 (Ålder) F3 (Kön) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) nominalskala kvotskala nominalskala ordinalskala ordinalskala b) En möjlighet är att beräkna
Läs merRepetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Läs merTentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas
Läs merLaboration 2. Omprovsuppgift MÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 Hp Vårterminen 2017 Laboration 2 Omprovsuppgift Regressionsanalys, baserat på Sveriges kommuner
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 5. Poäng. Totalt 40. Betygsgränser: G 20 VG 30
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 5 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 1
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 1 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 23 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 23 e mars 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merLaboration 3. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att analysera enkätundersökningar. MÄLARDALENS HÖGSKOLA
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 3 Övningsuppgifter Baserade på datasetet energibolag.rdata
Läs merRepetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Fredagen den 9 e juni Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Fredagen den 9 e juni 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merAtt välja statistisk metod
Att välja statistisk metod en översikt anpassad till kursen: Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 Lars Bohlin Innehåll Val av statistisk metod.... 2 1. Undersökning av en variabel...
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs mer, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Läs merStat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
Läs merHypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall
Läs mer8 Inferens om väntevärdet (och variansen) av en fördelning
8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 10 e januari 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merFöreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merHypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Läs merFöreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merSänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Läs merFöreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek
Läs merLTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
Läs mer34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 16 e januari 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 16 e januari 2015 Tillåtna hjälpmedel: Miniräknare
Läs merKapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Läs mer2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 29 oktober, 2016 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 12 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 12 e januari 2016 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merHur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Läs merTENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller
Läs merHur man tolkar statistiska resultat
Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?
Läs merLaboration 2. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att utföra multipel regressionsanalys MÄLARDALENS HÖGSKOLA
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 2 Övningsuppgifter Baserade på dataseten: Discrim_lab.xlsx
Läs merT-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas
Läs merTT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
Läs merAnalytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs merTentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl
Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs merÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merTentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
Läs merSpridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.
Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:
Läs merLösningsförslag till övningar
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Lösningsförslag till övningar Statistik och kvantitativa undersökningar 15 HP Höstterminen 014 1 Innehåll Deskriptiv statistik
Läs merEnvägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Läs merF22, Icke-parametriska metoder.
Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall
Läs merTentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Läs merDeskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Deskriptiv statistik Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Deskriptiv statistik Tabeller Figurer Sammanfattande mått Vilken
Läs merKorrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Läs merπ = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.
Stat. teori gk, vt 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 13.1, 13.3-13.4) Or dlista till NCT Nonparametric Sign test Rank Teckentest Icke-parametrisk Teckentest Rang Teckentestet är formellt ingenting
Läs merJanuary 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson
January 3, 2017 January 3, 2017 1 / 84 January 3, 2017 2 / 84 Part I Lärandemål Kvantitativ undersökning Insamling av kvantitativa data Inledning January 3, 2017 3 / 84 Lärandemål Lärandemål definiera
Läs merMVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Läs merOMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Läs merLösningsförslag till övningar
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till övningar Statistik och kvantitativa undersökningar 15 HP Höstterminen 2015 1 Innehåll Deskriptiv statistik
Läs merFöreläsning 6. Kapitel 7, sid Jämförelse av två populationer
Föreläsning 6 Kapitel 7, sid 186-209 Jämförelse av två populationer 2 Agenda Jämförelse av medelvärden för två populationer Jämförelse av populationsandelar för två populationer Konfidensintervall och
Läs merIcke parametriska metoder för variabler mätta på nominal- eller ordinalskala
Föreläsningsanteckningar till: F14 icke parametriska metoder F15 icke parametriska metoder Icke parametriska metoder för variabler mätta på nominal- eller ordinalskala Föreläsningarna baseras på kapitel
Läs merANOVA Mellangruppsdesign
ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 HP. Ten1 9 HP. 19 e augusti 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 HP Ten1 9 HP 19 e augusti 2015 Tillåtna hjälpmedel: Miniräknare
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
Läs merKursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument)
Kursens upplägg v40 - inledande föreläsningar och börja skriva PM 19/12 - deadline PM till examinatorn 15/1- PM examinationer, grupp 1 18/1 - Forskningsetik, riktlinjer uppsatsarbetet 10/3 - deadline uppsats
Läs merOBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna
Läs merFöreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Läs mer7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
Läs merF14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Läs merTENTAMEN I STATISTIKENS GRUNDER 2
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Läs merInlämningsuppgift-VT lösningar
Inlämningsuppgift-VT lösningar A 1. En van Oddset-spelare har under lång tid studerat hur många mål ett visst lag gör i ishockeymatcher och vet att sannolikheterna beskrivs av följande tabell: Mål 0 1
Läs merParade och oparade test
Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett
Läs merLULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-06-04 Skrivtid 0900 1400 Tentamen i: Statistik 1, Undersökningsmetodik 7.5 hp Antal uppgifter: 5 Krav för G: 15 Lärare:
Läs merIntroduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Läs mer1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att
Läs merLÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
Läs merStatistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Läs merTentamen Metod C vid Uppsala universitet, , kl
Tentamen Metod C vid Uppsala universitet, 170503, kl. 08.00-12.00 Anvisningar Av rättningspraktiska skäl skall var och en av de tre huvudfrågorna besvaras på separata pappersark. Börja alltså på ett nytt
Läs merTentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt.
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2010-09-23 kl. 09:00 13:00
Läs merBilaga 6 till rapport 1 (5)
till rapport 1 (5) Bilddiagnostik vid misstänkt prostatacancer, rapport UTV2012/49 (2014). Värdet av att undvika en prostatabiopsitagning beskrivning av studien SBU har i samarbete med Centrum för utvärdering
Läs merStandardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Läs mer