Deskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Storlek: px
Starta visningen från sidan:

Download "Deskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University"

Transkript

1 Deskriptiv statistik Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

2 Deskriptiv statistik Tabeller Figurer Sammanfattande mått Vilken typ som används beror på utrymme och vilken typ av data som insamlats 2

3 Grundläggande begrepp Individer Undersökningsobjekten i en studie (ex råttor, plasmaprover, patienter) Population Alla individer av en viss typ bildar en population (ex. Alla apotekarstudenter i Sverige) Variabel Skala Den egenskap som studeras hos individerna (vikt, rökvanor, kön, etc.) Den måttstock som variabeln mäts med 3

4 Olika typer av variabler Variabel Kvalitativ eller kvantitativ Kvalitativa variabler: Icke-numeriska (oftast) observationer som innebär en klassificering. Ex. blodgrupp, sjuk/frisk. Kvantitativa variabler: Numeriska observationer. Ex. blodtryck, tumörstorlek. 4

5 Olika typer av variabler Variabel Kvalitativ eller kvantitativ Nominal Ordinal Nominala variabler kan ej rangordnas (ex. nationalitet) Ordinala variabler kan rangordnas (ex. enkätsvar av typen ofta/sällan/aldrig) 5

6 Olika typer av variabler Variabel Kvalitativ eller kvantitativ Dikotom Nominal Trikotom Ordinal Polytom Dikotoma variabler kan bara anta två värden (ex. kön) Trikotoma variabler kan bara anta tre värden Ploytoma variabler kan bara anta ett visst antal värden 6

7 Olika typer av variabler Variabel Kvalitativ eller kvantitativ Diskreta variabler kan enbart anta vissa värden inom sitt variationsområde (ex. antal cigaretter/dag, tumörer) Diskret Kontinuerlig Kontinuerliga variabler kan anta vilka värden som helst inom sitt variationsområde (ex. vikt, förmögenhet) 7

8 Exempel Olika typer av variabler Ange variabeltyp för de fyra kolumnerna Patient nr Koncentration (mg/l) Kön Värk efter 2 timmar? Man Nej Man Ja Kvinna Nej Kvinna Ja Man Ja Patient nr? Diskret Koncentration? Kontinuerlig Kön? Nominal dikotom Värk efter 2 timmar? Ordinal dikotom 8

9 Mätskalor Vid en mätning av något slag, får vi information om det vi mäter eller iakttar. Olika typer av mätresultat/iakttagelser innehåller olika typ av information. Exempel Hypertonipatienter kan efter en tids läkemedelsbehandling klassificeras som förbättrad, oförändrad eller försämrad. Kvalitativ variabel Eller så kan den numeriska skillnaden i blodtryck före och efter läkemedelsbehandlingen användas för att mäta läkemedelseffekten. Kvantitativ variabel Mätresultatens olika typ av information mäts med olika skalor! 9

10 Mätskalor för kvalitativa variabler Nominalskala Den lägsta nivån. En klassificering utan rangordning. Ex. kön, hårfärg. Ordinalskala En klassificering med inbördes rangordning. Man kan dock ej säga något om storleken på skillnaden mellan olika individer. Ex. grad av biverkan eller läkemedelseffekt. 10

11 Mätskalor för kvantitativa variabler Intervallskala Observationerna är inte bara rangordnade, utan skillnader mellan individer kan jämföras, och även adderas och subtraheras. Ex. temperatur i grader Celsius Kvotskala Den högsta skalnivån. Med absolut nollpunkt; alla räknesätt kan användas. Ex. ålder, blodkoncentration, temperatur i grader Kelvin 11

12 Antal individer Deskriptiv statistik för kvalitativa variabler Tabeller Rökare F d rökare Aldrig rökt Yrsel Ej yrsel Figurer/bilder (Ex. Stolpdiagram, cirkeldiagram) Rökare F d rökare Icke-rökare Yrsel Ej yrsel Sammanfattande mått: Frekvens, typvärde Rökare 12

13 Antal (frekvens) Deskriptiv statistik för kvantitativa variabler Tabeller Vikt (kg) Frekvens Figurer/bilder (boxplottar, histogram) Vikt (kg) Vikt (kg) Sammanfattande mått: Medelvärde, median, varians, variationsvidd, standardavvikelse 13

14 Sammanfattande mått Centrallägesmått Parametriska (aritmetiskt respektive geometriskt medelvärde) Icke-parametriska (median, typvärde) Spridningsmått Parametriska (varians, absolut och relativ standardavvikelse) Icke-parametriska (variationsvidd, kvartiler och percentiler) 14

15 Centrallägesmått Parametriska Aritmetiskt medelvärde Det vanliga medelvärdet Bra när värdena ligger väl samlade x = x 1 + x x n n = n i=1 n x i 15

16 Centrallägesmått Parametriska Geometiskt medelvärde Bra när spridningen är stor och/eller skev GM = 10 log x 1+log x 2 + +log x n n GM = 10 n i=1 n log x i 16

17 Exempel Medelvärde Beräkna det aritmetiska och det geometriska medelvärdet av vikterna Individ Vikt (kg) Individ Vikt (kg) x x x x x x x 4 x x 14 x 15 n = x x x x x x x x x x 20 17

18 Exempel Medelvärde Beräkna det aritmetiska medelvärdet av vikterna x = x 1 + x x n n = n i=1 n x i x = x = 68.8 [kg] 18

19 Exempel Medelvärde Beräkna det geometiska medelvärdet av vikterna GM = 10 log x 1+log x 2 + +log x n n = 10 n i=1 n log x i log log log log = 1.83 GM = GM = 68.3 [kg] 19

20 Centrallägesmått Icke-parametriska Median Det mittersta, rangordnade, värdet Vid jämnt antal värden, medelvärdet av de två mittersta värdena Bra när spridningen är skev Typvärde Det vanligaste förekommande värdet i distributionen 20

21 Exempel Median och typvärde Beräkna medianen och typvärdet Individ Vikt (kg) Individ Vikt (kg)

22 Exempel Median och typvärde Beräkna medianen och typvärdet Individ Vikt (kg) Individ Vikt (kg) Medianen: nr 10 och nr 11 är i mitten x = x = [kg] Typvärdet: nr 9 och nr 10 har samma värde

23 Antal (frekvens) Exempel Centrallägesmått Median (69.1 kg) Medelvärde (68.8 kg) Vikt (kg) 23

24 Antal (frekvens) Exempel Centrallägesmått 40 Median Medelvärde Restid (min) 24

25 Spridningsmått Parametriska Varians Mäter spridningen på den kvadrerade observationskalan σ 2 = 1 n n i=1 x i μ 2 σ 2 är populationsvariansen μ är populationsmedelvärdet 25

26 Population Stickprovstagning Målgrupp om vilka vi vill kunna uttala oss om Studiepopulation De i målgruppen som är möjliga att studera Stickprov De som faktiskt ingår i studien 26

27 Mängden information Frihetsgrader Om vi kan göra mätningar av en variabel på alla individer i populationen så har vi tillgång till all information om variabeln. Om vi gör mätningar av variabeln på ett stickprov individer så ger dessa mätningar mindre information om variabeln. - Ett stort stickprov innehåller mycket mer information än ett litet stickprov. 27

28 Mängden information Frihetsgrader Mängden (oberoende-) information tillgänglig för beräkning av en parameter kallas för antalet frihetsgrader. När parametrarna beräknas utifrån ett stickprov så måste vi ta hänsyn till att vi inte har tillgång till all information om variabeln. 28

29 Frihetsgrader Degrees of freedom Exempel: För antal observationer (n): df = n 1 För kvalitativa data (χ 2 -test): df = antal kategorier 1 antal utfall 1 29

30 Spridningsmått Parametriska Stickprovsarians Mäter spridningen i ett stickprov Används som skattning av spridning i allmänpopulationen s 2 = 1 n 1 n i=1 x i x 2 s 2 är stickprovsvariansen x är stickprovsmedelvärdet 30

31 Exempel Stickprovsvarians s 2 = 1 n 1 n i=1 x i x 2 Beräkna stickprovsvariansen av vikterna Individ Vikt (kg) Individ Vikt (kg) n = x x x x 12 x = x x x x x x x x x x x x x x x x 20 31

32 Exempel Stickprovsvarians s 2 = 1 n 1 n i=1 x i x 2 Beräkna stickprovsvariansen av vikterna Individ Vikt (kg) x i Individ Vikt (kg) x i

33 Exempel Stickprovsvarians Beräkna stickprovsvariansen av vikterna s 2 = 1 n 1 n i=1 x i x 2 s 2 = s 2 = s 2 = 87.0 [kg 2 ] 33

34 Spridningsmått Parametriska Stickprovets standardavvikelse Mäter spridningen från medelvärdet ~ observationernas medelavstånd från medelvärdet s = 1 n 1 n i=1 x i x 2 s = stickprovets standardavvikelse 34

35 Exempel Stickprovsstandardavvikelse Beräkna stickprovsstandardavvikelsen av vikterna s = 1 n 1 n i=1 x i x 2 s 2 = 87.0 s = [kg] 35

36 Spridningsmått Parametriska Variationskoefficient Normaliserad (relativ) standardavvikelse Ger ett mått på spridningen som är jämförbart mellan olika skalor %CV = s x 100 %CV är variationskoefficienten [%] s är stickprovets standardavvikelse 36

37 Exempel Variationskoefficient Beräkna variationskoefficienten av vikterna %CV = s x 100 %CV = %CV = 13.6 [%] 37

38 Spridningsmått Icke-parametriska Kvartilavstånd (IQR) Bra om värdena är skevt fördelade Dela upp de rangordnade observationerna i 4 grupper med lika många observationer i varje grupp (kvartiler). Avståndet mellan den nedre och övre kvartilen mäter spridningen Q1 Q2=median Q3 Inter-kvartilavstånd (IQR) 38

39 Spridningsmått Beräkning av kvartilavstånd Beräkning av Q1 och Q3 Rangordna talen och beräkna medianen Dela materialet i två lika stora delar och beräkna medianen i den nedre och den övre halvan av materialet Om det är ett udda antal observationer skall den mittersta observationen ingå i både den nedre och den övre halvan av materialet 23, 25, 25, 27, 29, 30, 45, 56, 77 Q1 Median Q3 IQR = Q3-Q1 = = 20 39

40 Exempel Kvartilavstånd Beräkna kvartilavståndet för vikterna Individ Vikt (kg) Individ Vikt (kg)

41 Exempel Kvartilavstånd Beräkna kvartilavståndet för vikterna Individ Vikt (kg) Individ Vikt (kg) Dela in de rangordnade vikterna i 4 grupper med lika många individer i varje grupp 20 4 = 5 41

42 Exempel Kvartilavstånd Beräkna kvartilavståndet för vikterna Medianen (Q2) är medelvärdet av vikt nr 10 och vikt nr 11 Q1 är medelvärdet av vikt nr 5 och vikt nr 6 Q3 är medelvärdet av vikt nr 15 och vikt nr 16 42

43 Exempel Kvartilavstånd Beräkna kvartilavståndet för vikterna Q1 = = 60.8 [kg] Q3 = = [kg] IQR = = 13.8 [kg] 43

44 Vikt (kg) Icke-parametriska spridningsmått Boxplott Median Q1 44

45 Vikt (kg) Icke-parametriska spridningsmått Boxplott Morrhåren (+): Högsta datapunkten som befinner sig inom 1.5*IQR från Q3 max(data Q3+1.5*IQR) Andra definitioner av morrhåren finns Eventuella värden som ligger utanför morrhåren kallas för extremvärden. Morrhåren (-): Lägsta datapunkten som befinner sig inom 1.5*IQR från Q1 min(data Q1-1.5*IQR) 45

46 Spridningsmått Icke-parametriska Percentiler Beräknas på samma sätt som kvartilerna men istället för att dela in i fjärdedelar så delar vi in i hundradelar Ger en stor frihet när det gäller vilken nivå vi vill titta på Q1 motsvarar 25:e percentilen Q2 motsvarar 50:e percentilen (medianen) Q3 motsvarar 75:e percentilen 46

47 Spridningsmått Icke-parametriska Variationsvidd Skillnaden mellan det högsta och det lägsta värdet Ger mycket begränsad information 47

48 Sammanfattning Variabler Kvalitativa Nominala Ordinala Dikotoma, trikotoma, polytoma Kvantitativa Diskreta Kontinuerliga 48

49 Sammanfattning Skalor Kvalitativa variabler Nominalskala Ordinalskala Kvantitativa variabler Intervallskala Kvotskala 49

50 Sammanfattning Centrallägesmått Parametriska Aritmetiskt medelvärde Geometriskt medelvärde Icke-parametriska Median Typvärde 50

51 Sammanfattning Spridningsmått Parametriska Varians Standardavvikelse Variationskoefficient (Konfidensintervall) Icke-parametriska Kvartiler Percentiler Variationsvidd 51

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 1 732G70 Statistik A 1 Population och stickprov Population = den samling enheter (exempelvis individer) som vi vill dra slutsatser om. Populationen definieras på logisk väg med utgångspunkt

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning.

Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning. Biostatistik: Begrepp & verktyg Kvantitativa Metoder II: teori och tillämpning Lovisa.Syden@ki.se BIOSTATISTIK att hantera slumpmässiga variationer! BIO datat handlar om levande saker STATISTIK beskriva

Läs mer

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195. Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

Kvantitativ forskning C2. Viktiga begrepp och univariat analys

Kvantitativ forskning C2. Viktiga begrepp och univariat analys + Kvantitativ forskning C2 Viktiga begrepp och univariat analys + Delkursen mål n Ni har grundläggande kunskaper över statistiska analyser (univariat, bivariat) n Ni kan använda olika programvaror för

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

732G01/732G40 Grundläggande statistik (7.5hp)

732G01/732G40 Grundläggande statistik (7.5hp) 732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys I (SDA l, beskrivande statistik) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Statistikens grunder. Mattias Nilsson Benfatto, Ph.D

Statistikens grunder. Mattias Nilsson Benfatto, Ph.D Statistikens grunder Mattias Nilsson Benfatto, Ph.D Vad är statistik? Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information.

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

Medicinsk statistik I

Medicinsk statistik I Medicinsk statistik I Läkarprogrammet T5 VT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Medicinsk statistik Varför behöver Ni kunskap i medicinsk statistik? Självständigt arbete Framtida

Läs mer

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

Beskrivande statistik Kapitel 19. (totalt 12 sidor) Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande

Läs mer

Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng

Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng Kognitiv psykologi Moment 1: Statistik, 3 poäng VT 27 Lärare: Maria Karlsson Deskription (Kapitel 2 i Howell) Beskrivande mått, tabeller och diagram 1 2 Tabeller Tabell- och kolumnrubriker bör vara fullständiga

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys I (SDA l), 3 högskolepoäng ingående i kursen Undersökningsmetodik och statistisk

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Medicinsk statistik I

Medicinsk statistik I Medicinsk statistik I Läkarprogrammet T5 VT 2013 Susanna Lövdahl, Msc, Doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Medicinsk statistik VT-2013 Tre stycken

Läs mer

17/10/14. Kvantitativ metod och grundläggande statistik. Varför. Epidemiologi

17/10/14. Kvantitativ metod och grundläggande statistik. Varför. Epidemiologi Kvantitativ metod och grundläggande statistik Varför Sjuksköterskans yrkesutövning skall vila på vetenskaplig grund Kritiskt förhållningssätt, att kunna läsa artiklar och bedöma om slutsatser är rimliga

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys I (SDA l), 3 högskolepoäng ingående i kursen Undersökningsmetodik och

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Grundläggande biostatistik. Jenny Selander jenny.selander@ki.se 524 800 29

Grundläggande biostatistik. Jenny Selander jenny.selander@ki.se 524 800 29 Grundläggande biostatistik Jenny Selander jenny.selander@ki.se 524 800 29 Jenny Selander, Kvant. metoder, FHV T1 december 20111 Dagens föreläsning Beskrivande statistik kap 1 Samplingsfördelning kap 3

Läs mer

Statistiska undersökningar

Statistiska undersökningar Arbetsgång vid statistiska undersökningar Problemformulering, målsättning Statistiska undersökningar Arbetsgången mm Definition av målpopulation Framställning av urvalsram Urval Utformning av mätinstrument

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare

Läs mer

732G70, 732G01 Statistik A 7hp

732G70, 732G01 Statistik A 7hp 732G70, 732G01 Statistik A 7hp Linda Wänström (linda.wanstrom@liu.se) Tommy Schyman (tommy.schyman@liu.se) Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin 1 Statistik är en gren inom

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Hur man tolkar statistiska resultat

Hur man tolkar statistiska resultat Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?

Läs mer

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik Statistik Lars Walter Fil.lic. Statistik Linköping universitet Stockholms universitet Karolinska sjukhuset Sveriges Lantbruksuniversitet Linköpings universitet Folkhälsocentrum, LiÖ FoU-enheten, LiÖ Statistik

Läs mer

Föreläsning 4: Beskrivande statistik

Föreläsning 4: Beskrivande statistik Föreläsning 4: Beskrivande statistik Pär Nyman 4 september 2015 Både föreläsning 4 och 5 innehåller en del matematik. På Studentportalen finns därför några sidor med räkneövningar, vilka riktar riktar

Läs mer

Föreläsning 2 Deskription (forts). Index Deskription: diagram som stapeldiagram, histogram mm (tex spridningsdiagram, Mera om mätnivåer

Föreläsning 2 Deskription (forts). Index Deskription: diagram som stapeldiagram, histogram mm (tex spridningsdiagram, Mera om mätnivåer Föreläsning 2 Deskription (forts). Index Deskription: diagram som stapeldiagram, histogram mm (tex spridningsdiagram, boxplot ) Deskription: lägesmått, spridningsmått Indexserie med bastidpunkt, förändring,

Läs mer

STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Beskrivande statistik SDA l, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik

Läs mer

13.1 Matematisk statistik

13.1 Matematisk statistik 13.1 Matematisk statistik 13.1.1 Grundläggande begrepp I den här föreläsningen kommer vi att definiera och exemplifiera ett antal begrepp som sedan kommer att följa oss genom hela kursen. Det är därför

Läs mer

Kvantitativ strategi Univariat analys 2. Wieland Wermke

Kvantitativ strategi Univariat analys 2. Wieland Wermke + Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14

Läs mer

January 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson

January 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson January 3, 2017 January 3, 2017 1 / 84 January 3, 2017 2 / 84 Part I Lärandemål Kvantitativ undersökning Insamling av kvantitativa data Inledning January 3, 2017 3 / 84 Lärandemål Lärandemål definiera

Läs mer

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning

Läs mer

Statistik Termin 10, Läkarprogrammet, HT16

Statistik Termin 10, Läkarprogrammet, HT16 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -

Läs mer

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta

Läs mer

Olika typer av variabler och skalor. 1. Nominalskala 2. Ordinalskala 3. Intervallskala 4. Kvotskala. Intervallskala. Nominalskala.

Olika typer av variabler och skalor. 1. Nominalskala 2. Ordinalskala 3. Intervallskala 4. Kvotskala. Intervallskala. Nominalskala. Olika typer av variabler och skalor Kvalitativ variabel -variabeln antar inte numeriska värden utan bara olika kategorier. vis olika bilmärken, eller man, kvinna. Kvantitativ variabel Antar numeriska värden

Läs mer

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17 1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,

Läs mer

Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB. TentamensKod: Tentamensdatum: Tid:

Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB. TentamensKod: Tentamensdatum: Tid: Vetenskaplig teori och metod Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2012-11-09 Tid: 09.00-11.00 Hjälpmedel: Inga hjälpmedel

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)

1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) 1. a) F1(Sysselsättning) F2 (Ålder) F3 (Kön) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) nominalskala kvotskala nominalskala ordinalskala ordinalskala b) En möjlighet är att beräkna

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 23 e mars Ten 1, 9 hp

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 23 e mars Ten 1, 9 hp MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 23 e mars 2017 Ten 1, 9 hp Tillåtna hjälpmedel:

Läs mer

En typisk medianmorot

En typisk medianmorot Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt

Läs mer

Gamla tentor (forts) ( x. x ) ) 2 x1

Gamla tentor (forts) ( x. x ) ) 2 x1 016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån

Läs mer

Föreläsning 4 Beskrivande statistik

Föreläsning 4 Beskrivande statistik Föreläsning 4 Pär Nyman par.nyman@statsvet.uu.se 4 september 2015-1 - Introduktion Presentation av mig och dagens föreläsningar Doktorand sedan 2010, bakgrund som ekonom, forskning med fokus på finanspolitik

Läs mer

Innehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler

Innehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig steg 1 5 Steg 4 Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 Hypotesprövning

Läs mer

Forskningsmetodik 2006 lektion 2

Forskningsmetodik 2006 lektion 2 Forskningsmetodik 6 lektion Per Olof Hulth hulth@physto.se Slumpmässiga och systematiska mätfel Man skiljer på två typer av fel (osäkerheter) vid mätningar:.slumpmässiga fel Positiva fel lika vanliga som

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys I (SDA l, beskrivande statistik) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Föreläsning 4: Beskrivande statistik

Föreläsning 4: Beskrivande statistik Föreläsning 4: Beskrivande statistik Pär Nyman 25 januari 2016 Både föreläsning 4 och 5 innehåller en del matematik. På Studentportalen finns därför några sidor med räkneövningar, vilka riktar riktar sig

Läs mer

EXTRA ÖVNINGSUPPGIFTER MED SVAR

EXTRA ÖVNINGSUPPGIFTER MED SVAR EXTRA ÖVNINGSUPPGIFTER MED SVAR 1.Vilka av följande variabler anser du vara kvalitativa respektive kvantitativa? a) Antal åskådare b) Fingerlängd c) Bilmärke d) Tjänstekategori e) Chokladkonsumtion 2.Vilka

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare Stockholms universitet September 2011 Balanseringspunkt Låt oss betrakta mätserie 4 för vilken vi antar att mätdata är längder hos rekryter. En strukturell kunskap om dessa längder är av betydelse vid

Läs mer

Matematisk statistik för medicinare - testversion. Johan Olsén

Matematisk statistik för medicinare - testversion. Johan Olsén Matematisk statistik för medicinare - testversion Johan Olsén (johan.olsen.uu@gmail.com) 6 november 2014 Innehåll 1 Introduktion 4 1.1 Läsguide.............................................. 4 2 Lathund

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys I (SDA l), 3 högskolepoäng ingående i kursen Undersökningsmetodik och statistisk

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Förra gången (F4-F5)

Förra gången (F4-F5) F6 Standardiseringsmetoder Etiska regler och lagregler Förra gången (F4-F5) Lägesmått: aritmetiskt medelvärde (minst intervall), median (minst ordinal), typvärde (alla nivåer) När vi vill beskriva tyngdpunkten

Läs mer

LYCKA TILL! Omtentamen i Statistik A1, Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci

LYCKA TILL! Omtentamen i Statistik A1, Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci Omtentamen i Statistik A1, 2013 08 15 Skrivtid: 3 timmar (08:00 11:00) Ansvarig lärare: Åsa Johansson poäng = 45 p Betyg (U/G/VG):

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c)

1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c) 1a) F1 och F3 nominalskala, enbart olika saker F kvotskala, Riktiga siffror, 0 betyder att man inte finns och avståndet mellan två värden är exakt definierat F4 och F5 ordinalskala, vi kan ordna svaren

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Kursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument)

Kursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument) Kursens upplägg v40 - inledande föreläsningar och börja skriva PM 19/12 - deadline PM till examinatorn 15/1- PM examinationer, grupp 1 18/1 - Forskningsetik, riktlinjer uppsatsarbetet 10/3 - deadline uppsats

Läs mer

ANOVA Mellangruppsdesign

ANOVA Mellangruppsdesign ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,

Läs mer

Statistik för läkare och läkarstudenter

Statistik för läkare och läkarstudenter Statistik för läkare och läkarstudenter Första upplagan Johan Olsén 3 november 2015 Förord Författandet av detta material började som en ambition att skapa ett hjälpmedel för läkarstudenter som vill lära

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2

Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2 Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-23 Faktum är att vi i praktiken nästan alltid har en blandning

Läs mer

Sociologi GR (A) Sociologisk Metod Examination #2 Peter Axelsson. N Minimum Maximum Mean Std. Deviation

Sociologi GR (A) Sociologisk Metod Examination #2 Peter Axelsson. N Minimum Maximum Mean Std. Deviation Uppgift 1 Vikt Vikt är en variabel på kvotskalan. Det gör att vi kan räkna med aritmetiskt medelvärde (m) som centralmått (Djurefeldt, 2003:59). Medelvärdet är 35,85 kg. Det saknas värden för två observationer,

Läs mer

36 poäng. Lägsta poäng för Godkänd 70 % av totalpoängen vilket motsvarar 25 poäng. Varje fråga är värd 2 poäng inga halva poäng delas ut.

36 poäng. Lägsta poäng för Godkänd 70 % av totalpoängen vilket motsvarar 25 poäng. Varje fråga är värd 2 poäng inga halva poäng delas ut. Vetenskaplig teori och metod Provmoment: Tentamen 3 Ladokkod: VVT012 Tentamen ges för: SSK05 VHB 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2012-04-27 Tid: 09.00-11.00 Hjälpmedel: Inga hjälpmedel

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Statistik 1 för biologer, logopeder och psykologer Paul Blomstedt Innehåll 1 Inledning 2 2 Deskriptiv statistik 2 2.1 Variabler och datamaterial...................... 2 2.2 Tabulering och grask beskrivning.................

Läs mer

DELMOMENT INOM GRUNDUTBILDNINGEN I BIOLOGI/MOLEKYLÄRBIOLOGI HT Kod:... Nr Fråga Svarsalternativ (ringa in rätt svar)

DELMOMENT INOM GRUNDUTBILDNINGEN I BIOLOGI/MOLEKYLÄRBIOLOGI HT Kod:... Nr Fråga Svarsalternativ (ringa in rätt svar) SKRIFTLIGT PROV: Introduktion till BIOLOGISK STATISTIK, 3hp. DELMOMENT INOM GRUNDUTBILDNINGEN I BIOLOGI/MOLEKYLÄRBIOLOGI HT 2015 Dag: Fredagen den 15 januari, 2016 Tid: 9 00-12 00 Svara på markerad plats.

Läs mer

Introduktion till Biostatistik. Hans Stenlund, 2011

Introduktion till Biostatistik. Hans Stenlund, 2011 Introduktion till Biostatistik Hans Stenlund, 2011 Modellbaserad analys Regression Logistisk regression Överlevnadsanalys Hitta misstag Hantera extremvärden Bortfall Hur samlas data in? Formell analys

Läs mer

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4 MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas

Läs mer

Statistik Lars Valter

Statistik Lars Valter Lars Valter LARC (Linköping Academic Research Centre) Enheten för hälsoanalys, Centrum för hälso- och vårdutveckling Statistics, the most important science in the whole world: for upon it depends the applications

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Mall och manual för granskning av interventionsstudier

Mall och manual för granskning av interventionsstudier Mall och manual för granskning av interventionsstudier Denna granskningsmall är modifierad efter original från SBU (5), 2002-12-12. En vetenskaplig artikel är oftast indelad i följande avsnitt: introduktion,

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys I (SDA l, beskrivande statistik) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

Kvantitativ strategi viktiga begrepp II. Wieland Wermke

Kvantitativ strategi viktiga begrepp II. Wieland Wermke + Kvantitativ strategi viktiga begrepp II Wieland Wermke + Viktiga begrepp n Variabel: ett namngivet objekt som används för att representera ett okänt värde (platshållare), till exempel ett reellt tal.

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

Hur skriver man statistikavsnittet i en ansökan?

Hur skriver man statistikavsnittet i en ansökan? Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

Kent W. Nilsson. Falun

Kent W. Nilsson. Falun Kent W. Nilsson Falun 2016 10 05 Att tänka statistiskt Förr, kunskap baserades på auktoriteter; Kungen, krykan m.m. Industriell- och teknisk revolution De som inte har möjlighet och kunskap att ta till

Läs mer

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll

Läs mer