Repetitionsföreläsning
|
|
- Emma Hellström
- för 6 år sedan
- Visningar:
Transkript
1 Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning och mäter den tid det tar innan byxorna går sönder. Populationen är alla byxor som företaget tillverkar och kommer att tillverka av denna modell. Urvalet är de 100 par man väljer att testa Inferens handlar om hur man med hjälp av information från ett urval kan dra slutsatser om populationen. En variabel kan mätas på 4 olika typer av skalor, som har en inbördes rangordning utifrån hur mycket information vi har tillgång till: 1. Nominalskala Innehåller minst information 2. De olika utfallen kan rangordnas 3. Intervallskala De olika utfallen kan rangordnas och avståndet mellan utfallen har en innebörd. 4. Kvotskala De olika utfallen kan rangordnas, avståndet mellan utfallen har en innebörd och noll betyder avsaknad av egenskapen. Skaltypen avgör vilka beräkningar, diagram och statistiska test som vi kan använda. Vi kan alltid använda en metod som är avsedd för en lägre skaltyp men aldrig en metod som är avsedd för en högre skaltyp. Oftast är det dock ett sämre alternativ att välja en metod som är avsedd för en lägre skaltyp. Test av en hypotes om att en variabel i en population har ett visst medelvärde, eller att en variabel i en population har en viss fördelning. I dessa tester har vi enbart en variabel. Skaltyp Test av Test metod Intervallskala eller eller nominalskala eller nominalskala Medelvärde Andel som har ett visst utfall Fördelningöver variabelns alla utfall Hypotestest på medelvärde från en population Hypotestest på andel från en population Chi 2 Men i de här fallen är det oftast bättre att göra konfidensintervall. Test av en hypotes om vilken av två variabler i en population som är störst, test av beroende urval. (Vi har en grupp och jämför två variabler i den gruppen, för varje individ har vi då två utfall och kan beräkna differensen mellan dem) Skaltyp Test av Test metod Intervallskala eller Medelvärdeav differenser Vilket tecken som har störst rangsumma Vilket tecken har flest observationer t-test på beroende urval Wilcoxons teckenrangtest teckentest Testerna på föregående 2 slideär i första hand deskriptiva test. Vi testar om en variabel i en population ser ut på ett visst sätt eller vilken av två variabler som är störst. (Testerna om vilken variabel som är störst kan dock användas för att undersöka samband, exempelvis om de båda variablerna är hälsotillstånd före respektive efter en behandling. Vi ska nu övergå till analytiska test, finns det ett samband mellan två variabler. Om den ena av dessa båda variabler är en variabel mätt på nominalskala, kan vi använda den för att dela in populationen i två eller flera grupper och se om dessa avviker från varandra med avseende på den andra variabeln. På nästa slidesammanfattas de olika tester vi har för att jämföra olika grupper. Vi kan dela in grupperna med hjälp av en variabel som är mätt på nominalskala. 1
2 Att jämföra oberoende urval/populationer Att undersöka samband mellan två variabler mätta på ordinalskala: Nominalskala Kvotskala 2 populationer Flera populationer Hypotestest på andelar från två populationer, Chi 2 i korstabell Wilcoxon rangsummetest Hypotesttestpå medelvärde och/eller varians från två populationer Chi 2 i korstabell Kruska Wallis ANOVA testet Om vi vill testa om två variabler har ett samband där båda variablerna mäts på minst ordinalskala kan vi använda spearmanskorrelationskoefficient för att mäta styrkan i sambandet. Dock fångas enbart linjära samband av korrelationskoefficienter. I det här fallet kan vi också klassindela den ena variabeln, använda den för att dela in materialet i grupper och göra en Kruska Wallis. Det är en svagare test i den meningen att vi inte utnyttjar informationen om att utfallen kan rangordnas på den variabel vi använder till gruppindelning. Men vi kan fånga icke linjära samband och vi får resultaten redovisat per grupp. Vi kan också klassindela båda variablerna och använda chi2 i korstabell. Testen blir ännu svagare men vi får frekvenserna redoisade parvis för variablerna. Dessa tre tester kan komplettera varandra. Att undersöka samband mellan två variabler mätta på intervall eller. Om vi vill testa om två variabler har ett samband där båda variablerna mäts på minst intervallskala kan vi använda pearssonskorrelationskoefficient för att mäta styrkan i sambandet. Om vi kan utesluta en kausal påverkan i en av riktningarna, dvs om vi kan hävda att den ena variabeln är oberoende av den andra och därmed säga att det är den beroende variabeln som beror av oberoende kan vi beräkna hur stor den kausala effekten är genom att beräkna en regressionskoefficient. Men hjälp av en multipel regressionsmodell kan vi beräkna storleken på den kausala effekten från var och en av de oberoende variablerna givet att övriga oberoende variabler är oförändrade. Detta är vår kaxigaste metod. Vi säger inte enbart att det finns ett samband utan beräknar också storleken på kausala effekter. Därmed behöver vi starka antaganden som ska vara uppfyllda och intervall eller på variablerna. (Eller dummyvariabler som oberoende variabler) Några exempel på metodval: Att jämföra oberoende urval/populationer Övning 19d, icke parametriska Erbjuder de hotell som tillhör en kedja mer eller mindre relevant kompetensutbildning till sin personal? nominalskala ordinalskala Nominalskala 2 populationer Flera populationer Hypotestest på andelar från två populationer, Chi 2 i korstabell Wilcoxon rangsummetest Chi 2 i korstabell Kruska Wallis Kvotskala Hypotesttestpå medelvärde eller varians från två populationer ANOVA testet 2
3 Några exempel på metodval: Övning 19c, icke parametriska Är yngre anställda mer eller mindre nöjda med relevansen i den kompetensutbildning som arbetsgivarna arbjuder Några exempel på metodval: Övning 19b, icke parametriska Har stora hotell yngre anställda än små hotell? ordinalskala Spearmans rangkorrelationskoefficient är möjlig eftersom båda variablerna har minst ordinalskala. (Dock ej pearsons korrelationskoefficient) Om sambandet är icke linjärt kan Kruska Wallis avslöja att de i mellangruppen anser kompetensutbildningen mindre relevant. Vi kan använda regressionsanalys eftersom båda variablerna har. Om sambandet är icke linjärt kan vi prova en kvadratisk modell eller en log linjär modell. (Vi kan dela in hotellen i grupper efter hur många anställda de har och göra ANOVA analys eller klassindela båda och göra korstabell, men eftersom regressionsanalys är vår kraftfullaste metod är det svårt att argumentera för något annat.) En forskare vill undersöka om det går att lindra huvudvärk med hjälp av en ny behandling. Han drar ett slumpmässigt urval av 11 patienter som har sökt för problem med återkommande huvudvärk. Patienterna får ange sina huvudvärksproblem på en skala mellan 1 och 10, där 10 är stora problem och 1 små problem, före respektive efter en tioveckors behandling med den nya metoden. Gör en hypotestest för att se om vi kan bevisa att behandlingen har effekt på huvudvärk. Använd 5 % signifikansnivå. : Behandlingen har ingen effekt på huvudvärk. : Huvudvärken antingen förbättras eller försämras av behandlingen. Här har vi två variabler mätta på ordinalskala, men vi ska inte se om de korrelerar utan om den ena är större än den andra. Därför är det inte spearmans korrelationskoefficient i det här fallet. Test av en hypotes om vilken av två variabler i en population som är störst, test av beroende urval. (Vi har en grupp och jämför två variabler i den gruppen, för varje individ har vi då två utfall och kan beräkna differensen mellan dem) Skaltyp Hypotes om Test metod Intervallskala eller Medelvärdeav differenser Vilket tecken som har störst rangsumma Vilket tecken har flest observationer t-test på beroende urval Wilcoxons teckenrangtest teckentest Sammanfattning av regressionsanalys: Att tolka regressionskoefficienterna Om den beroende variabeln är en icke logaritmerad variabel och den oberoende variabeln är: En vanlig kvantitativ variabel: Ökningen av Y när X ökar med en enhet, vid oförändrade värden på övriga oberoende variabler. En dummy variabel: Skillnaden i Y jämfört med referenskategorin, vid oförändrade värden på övriga oberoende variabler. En kvadrerad variabel. Parametern före den okvadrerade variabeln ger oss effekten av X på Y när X är lågt. Parametern före den kvadrerade variabeln ger oss förändringen av effekten av X på Y när X ökar. Sammanfattning av regressionsanalys: Att tolka regressionskoefficienterna Om den beroende variabeln är en logaritmerad variabel och den oberoende variabeln är: Också en logaritmerad variabel Den procentuella ökningen av Y när X ökar en procent, vid oförändrade värden på övriga oberoende variabler. En vanlig kvantitativ variabel: Antilogav koefficienten minus ett och multiplicerat med hundra ger oss den procentuella ökningen av Y när X ökar en enhet, vid oförändrade värden på övriga oberoende variabler. En dummy variabel: Antilogav koefficienten minus ett och multiplicerat med hundra gerossden procentuella skillnaden i Y jämfört med referenskategorin, vid oförändrade värden på övriga oberoende variabler. 3
4 Sammanfattning av regressionsanalys: =3,2+1,5 +0,11 10, =1,29 Om x 1 ökar med en procent ökar y med 1,5 procent, vid oförändrade värden på övriga oberoende variabler. Om x 2 ökar med en enhet ökar y med 29 procent, vid oförändrade värden på övriga oberoende variabler. Om x 2 är en dummy: skillnaden mot referenskategorin är 29 procent, vid oförändrade värden på övriga oberoende variabler. Att tolka regressionskoefficienter när variablerna är andelar. = + + Y = antal allergiker per invånare. X = antal personer som bor i städer per invånare tolkas som ökningen av antal allergiker per invånare, om andelen som bor i städer ökar med 1 person per invånare. Att tolka regressionskoefficienter när variablerna är andelar. = + + Y = andel allergiker. X = andel som bor i städer. Att tolka regressionskoefficienter när variablerna är andelar. = + + Y = andel allergiker, procent. X = andel som bor i städer, procent. tolkas som ökningen av andelen allergiker om andelen som bor i städer ökar med 1. Dock en lite märklig tolkning eftersom en andel knappast kan öka med ett. Bättre att dela med 10 eller hundra och gära tolkningen om andelen som bor i städer ökar med en tiondel eller en hundradel. tolkas som ökningen av andelen allergiker uttryckt i procentenheter om andelen som bor i städer ökar med en procentenhet. log = + log + tolkas som procentuella ökningen av andelen allergiker om andelen som bor i städer ökar med en procent. Antag att vi får följande resultat: = +0,4 + Om andelen som bor i städer ökar med en procentenhet ökar andelen allergiker med 0,4 procentenheter. log = +2 log + Om andelen som bor i städer ökar med en procent ökar andelen allergiker med en procent. I ett land där 50 % av befolkningen bor i städer och 5 % är allergiker innebär första regressionsmodellen att: Om andelen som bor i städer ökar till 51 % ökar andelen allergiker till 5,4 % Andra regressionsmodellen att Om andelen som bor i städer ökar till 50,5 % ökar andelen allergiker till 5,1 % ( 51% => 5,2% ) Problem som kan uppstå vid regressionsanalys. Ej normalfördelade residualer Heteroskedasticitet Endogenitet Multikollinearitet Felspecificerad modell linjär icke linjär felaktigt utelämnade oberoende variabler 4
5 Sannolikhetslära Sannolikhet är ett tal mellan noll och ett som beskriver hur stor chans det är att något händer. Olika sätt att bestämma sannolikheter Klassisk sannolikhetsteori Fungerar enbart om alla utfall har samma sannolikhet Sannolikheten för ett specifikt utfall: 1 ö Sannolikheten för en händelse: å ä ö Olika sätt att bestämma sannolikheter Räkneregler för sannolikheter Empirisk sannolikhetsteori Baseras på historiska realiserade utfall. Sannolikheten för en händelse: å ä å ö The lawoflargenumbers : Ju fler gånger ett försök utförs desto säkrare blir den empiriska sannolikheten Slumpvariabel - random variable. En kvantitet (eller kategori) som är resultatet av ett experiment och som kan anta olika värden. Diskret slumpvariabel - discrete random variable. En slumpvariabel som enbart kan anta vissa distinkta värden. Kontinuerlig slumpvariabel - continous random variable. En slumpvariabel som kan anta alla värden inom ett intervall. Egenskaper hos en sannolikhetsfördelning. En sannolikhetsfördelning är ett sätt att visa en slumpvariabels alla utfall och de olika utfallens sannolikheter. Sannolikheten för ett enskilt utfall är ett tal mellan 0 och 1. Utfallen är ömsesidigt uteslutande händelser. Summan av sannolikheten för alla möjliga utfall är 1 5
6 Några specialfall av diskreta sannolikhetsföredelningar: Uniform diskret sannolikhetsfördelning. Alla utfall har samma sannolikhet Binomial sannolikhetsfördelning Vi räknar något och sannolikheten att det vi räknar ska uppkomma är hela tiden densamma Kontinuerliga sannolikhetsfördelningar 1. Uniform sannolikhetsfördelning 2. Normalfördelning 3. Exponentialfördelning Hypergeometrisk sannolikhetsfördelning Vi tar ett urval av en population utan återläggning och räknar antalet som har en viss egenskap Poisson fördelningen ingår ej i kursen Senare kommer vi att gå igenom fler kontinuerliga sannolikhetsfördelningar: -fördelningen Chi2-fördelningen F-fördelningen Sannolikhetsfunktion för en uniform fördelning. (Density function) Sannolikheten att x hamnar mellan c och d är lika med den andel av arean som ligger mellan c och d. The Empirical Rule 1 b - a P ( c < x < d ) = d - c b - a a c d b Vad är sannolikheten att ur den standardiserade normalfördelningen dra ett tal som är mindre än 2? <2.00 = 0< < <0.00 = 0< < = =
7 Ett annat exempel: Vad är sannolikheten att ur den standardiserade normalfördelningen dra ett tal som är mindre än minus 1,5. < 1.5 = >1.5 = 0.5 0< <1.5 = 0.5 0< <1.5 = = Alla normalfördelningar kan konverteras till den standardiserade normalfördelningen. Exempel på beräkning Antag att svenska kroppslängden hos svenska män är normalfördelad med medelvärdet 181 cm och standardavvikelsen 6 cm. Kroppslängden hos svenska män kan noteras som: = 181,6 Hur stor andel av svenska män är längre än cm? 187, ,4 z = = 1, P ( x > 187.4) = P( z > 1,07 ) = 0.5 P( 0 < z < 1,07 ) Alla normalfördelningar kan konverteras till den standardiserade normalfördelningen. Beräkning av index över sysselsättningen i Sverige Exempel på beräkning Antag att svenska kroppslängden hos svenska män är normalfördelad med medelvärdet 181 cm och standardavvikelsen 6 cm. Hur stor andel av svenska män är längre än cm? Kroppslängden hos svensk män kan noteras som: = 181,6 år antal sysselsatta Index , , , , , , , ,4 z = = 1, Det år då indexet sätts till 100 kallas basår, i det här fallet P ( x > 187.4) = P( z > 1,07 ) = 0.5 P( 0 < z < 1,07 ) = = % av svenska män är längre än cm 7
8 Laspeyre Prisindex, = 100 Där: p. 0= Pris vid tidpunkt 0 p. t= Pris vid tidpunkt t q. 0= Kvantitet vid tidpunkt 0 q. t= Kvantitet vid tidpunkt t Paasches Prisindex, = 100 Jordgubbar Pris per liter Jordgubbar Antal sålda liter Yougurt Pris per liter Yougurt Antal sålda liter Laspeyres = År 1 År 2 prisökning % % Paasche = Principen för kedjeindex Antag att A och B är två variabler för vilka vi inte känner nivån men vet den årliga förändringen. Årlig förändring År A B 1 2% 1% 2 1.5% 0.5% 3 2.5% 1% 4 3% -0.5% 5 2% 1% 6 1% 1.5% Index serier, basår:1 År A B ,5 100, ,0 101, ,2 101, ,3 102, ,4 103,5 107,2 1,02 101,5 0,995 Användning av prisindex ö = ä = ö 100 ä ä 100 8
Repetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Läs merAtt välja statistisk metod
Att välja statistisk metod en översikt anpassad till kursen: Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 Lars Bohlin Innehåll Val av statistisk metod.... 2 1. Undersökning av en variabel...
Läs mer1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)
1. a) F1(Sysselsättning) F2 (Ålder) F3 (Kön) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) nominalskala kvotskala nominalskala ordinalskala ordinalskala b) En möjlighet är att beräkna
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Fredagen den 9 e juni Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Fredagen den 9 e juni 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merimport totalt, mkr index 85,23 100,00 107,36 103,76
1. a) F1 Kvotskala (riktiga siffror. Skillnaden mellan 3 och 5 månader är lika som skillnaden mellan 5 och 7 månader. 0 betyder att man inte haft kontakt med innovations Stockholm.) F2 Nominalskala (ingen
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merTentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 23 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 23 e mars 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng)
1 F1 ordinalskala F2 kvotskala F65A nominalskala F65B kvotskala F81 nominalskala (motivering krävs för full poäng) b) Variabler som används är F2 och F65b. Eftersom det är kvotskala på båda kan vi använda
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merFråga nr a b c d 2 D
Fråga nr a b c d 1 B 2 D 3 C 4 B 5 B 6 A 7 a) Första kvartilen: 33 b) Medelvärde: 39,29 c) Standardavvikelse: 7,80 d) Pearson measure of skewness 1,07 Beräkningar: L q1 = (7 + 1) 1 4 = 2 29-10 105,8841
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 10 e januari 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 5. Poäng. Totalt 40. Betygsgränser: G 20 VG 30
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 5 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merInnehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig steg 1 5 Steg 4 Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 Hypotesprövning
Läs merKursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument)
Kursens upplägg v40 - inledande föreläsningar och börja skriva PM 19/12 - deadline PM till examinatorn 15/1- PM examinationer, grupp 1 18/1 - Forskningsetik, riktlinjer uppsatsarbetet 10/3 - deadline uppsats
Läs merTabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer
Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Observera att inga anteckningar får finnas i formelsamlingen vid tentamenstillfället Thommy Perlinger 17 september 2015 Innehåll
Läs merLaboration 3. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att analysera enkätundersökningar. MÄLARDALENS HÖGSKOLA
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 3 Övningsuppgifter Baserade på datasetet energibolag.rdata
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs mer1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c)
1a) F1 och F3 nominalskala, enbart olika saker F kvotskala, Riktiga siffror, 0 betyder att man inte finns och avståndet mellan två värden är exakt definierat F4 och F5 ordinalskala, vi kan ordna svaren
Läs merIcke parametriska metoder för variabler mätta på nominal- eller ordinalskala
Föreläsningsanteckningar till: F14 icke parametriska metoder F15 icke parametriska metoder Icke parametriska metoder för variabler mätta på nominal- eller ordinalskala Föreläsningarna baseras på kapitel
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs merFöreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 1
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 1 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merF22, Icke-parametriska metoder.
Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merAnalytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Läs merDeskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Deskriptiv statistik Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Deskriptiv statistik Tabeller Figurer Sammanfattande mått Vilken
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110319)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs merLaboration 2. Omprovsuppgift MÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 Hp Vårterminen 2017 Laboration 2 Omprovsuppgift Regressionsanalys, baserat på Sveriges kommuner
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?
Läs merFöreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 HP. Ten1 9 HP. 19 e augusti 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 HP Ten1 9 HP 19 e augusti 2015 Tillåtna hjälpmedel: Miniräknare
Läs merFöreläsning 1. 732G60 Statistiska metoder
Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt
Läs merViktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.
Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek
Läs merI. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser
Läs merVälkomna till Statistik och kvantitativa undersökningar Lars Bohlin Syfte: Lärandemål. Lärandemål forts.
Föreläsningsanteckningar till: F1 introduktion, deskriptiv statistik 1 Välkomna till Statistik och a undersökningar Lars Bohlin 021-103198 lars.bohlin@mdh.se Syfte: Att ge studenten insikter i grunderna
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merFÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Läs merFöreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 16 e januari 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 16 e januari 2015 Tillåtna hjälpmedel: Miniräknare
Läs merST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,
Läs merHypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
Läs merStatistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik
Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare
Läs merParade och oparade test
Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs merKap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola
Läs merOBS! Vi har nya rutiner.
KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 14 januari 2012 Tillåtna hjälpmedel: miniräknare
Läs merStatistiska analyser C2 Bivariat analys. Wieland Wermke
+ Statistiska analyser C2 Bivariat analys Wieland Wermke + Bivariat analys n Mål: Vi vill veta något om ett samband mellan två fenomen n à inom kvantitativa strategier kan man undersöka detta genom att
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Läs mera) Facit till räkneseminarium 3
3.1 Fig 1. Sammanlagt 30 individer rekryteras till studien. Individerna randomiseras till en av de fyra studiearmarna (1: 500 mg artemisinin i kombination med piperakin, 2: 100 mg AMP1050 i kombination
Läs merSTOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 12 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 12 e januari 2016 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 24 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 24 e mars 2016 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merEn kort instruktion för arbete i SPSS
En kort instruktion för arbete i SPSS Anpassad till kursen Statistik och kvantitativa undersökningar HT14 Lars Bohlin 1 Innehåll Att lägga in data i SPSS... 3 Att skapa nya variabler... 4 Koda en ny variabel
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merFöreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Läs merOlika typer av variabler och skalor. 1. Nominalskala 2. Ordinalskala 3. Intervallskala 4. Kvotskala. Intervallskala. Nominalskala.
Olika typer av variabler och skalor Kvalitativ variabel -variabeln antar inte numeriska värden utan bara olika kategorier. vis olika bilmärken, eller man, kvinna. Kvantitativ variabel Antar numeriska värden
Läs merFinansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Läs merBeskrivande statistik Kapitel 19. (totalt 12 sidor)
Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande
Läs merKapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
Läs merF5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Läs merHypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Läs merFöreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Läs merLogistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013
Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas
Läs merStokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
Läs merFöreläsning G70 Statistik A
Föreläsning 1 732G70 Statistik A 1 Population och stickprov Population = den samling enheter (exempelvis individer) som vi vill dra slutsatser om. Populationen definieras på logisk väg med utgångspunkt
Läs merAgenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten
Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande
Läs merHöftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Läs merStatistikens grunder. Mattias Nilsson Benfatto, Ph.D
Statistikens grunder Mattias Nilsson Benfatto, Ph.D Vad är statistik? Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information.
Läs merLUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Läs merLTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
Läs mer34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Läs merTypvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.
Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median
Läs merKapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två
Läs merKapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Läs merF19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Läs merAgenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten
Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Läs merEn kort instruktion för arbete i R Commander
En kort instruktion för arbete i R Commander Anpassad till kursen Statistik och kvantitativa undersökningar VT19 Lars Bohlin 1 Innehåll Allmänt om R Commander... 4 Att öppna en R datafil... 5 Att spara
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Läs mer7.3.3 Nonparametric Mann-Whitney test
7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi
Läs merStatistik Termin 10, Läkarprogrammet, HT16
I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -
Läs merStat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
Läs merSTOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys I (SDA l), 3 högskolepoäng ingående i kursen Undersökningsmetodik och
Läs merVälkommen till Matematik 3 för lärare!
Välkommen till Matematik 3 för lärare! Nu: Statistik för lärare + Linjär algebra + datorlabbar Antagen? Registrerad? För er som läser första ämnet nu (MAxx eller FYMA): Hållbar Utveckling med Människan
Läs mer