Analytisk statistik. Mattias Nilsson Benfatto, PhD.
|
|
- Gerd Svensson
- för 7 år sedan
- Visningar:
Transkript
1 Analytisk statistik Mattias Nilsson Benfatto, PhD
2
3 Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation
4 Analytisk statistik Med analytisk statistik avses metoder och tekniker för statistisk inferens, dvs. metoder för att dra slutsatser om en population genom att analysera egenskaper hos slumpmässiga stickprov ur populationen
5 Statistisk inferens
6 Statistisk inferens Analys av stickprovet ger oss information om populationen, förutsatt att stickprovet är: tillräckligt stort slumpmässigt utvalt från populationen normalfördelat
7 Metoder för statistisk inferens 1. Punktestimering och skattning av konfidensintervall Att utifrån stickprov dra slutsatser om populationens egenskaper 2. Hypotesprövning Att utifrån stickprov jämföra grupper och dra slutsatser om signifikanta skillnader mellan grupperna 3. Regressionsanalys Att utifrån stickprov dra slutsatser om sambandet mellan två (eller fler) variabler och förutsäga värdet på en variabel utifrån kunskapen om en annan
8 1. Punktestimering och skattning av konfidensintervall Exempel: Man vill veta hur mycket svenska 10-åringar tittar på TV per dag Ur populationen alla 10-åringar görs ett urval och ur detta dras ett stickprov. Dessa intervjuas om hur länge de tittar på TV. Medelvärdet för detta stickprov var 2,6 timmar. 95% konfidensintervall ger gränserna 2,4 till 2,8 tim. 2,4 2,6 2,8 nedre gräns punktestimat övre gräns Med 95% sannolikhet ser en svensk 10-åring mellan 2,4-2,8 timmar på TV per dag.
9 2. Hypotesprövning Istället för att enbart estimera hur det ser ut i populationen försöker vi att statistiskt pröva hypoteser om populationen som stickprovet kommer ifrån. Nollhypotes (H 0 ) Ett antagande om ingen skillnad eller samband föreligger. Att slumpen är orsaken till det erhållna värdet. Alternativhypotes (H 1 ) (forskningshypotesen) Ett antagande om att det finns en skillnad eller ett samband. Att det finns en annan orsak än slumpen till det erhållna värdet.
10 Hypotesprövning Den grundläggande frågan är alltid om vårt stickprovsresultat gäller generellt (i populationen) eller är ett resultat av slumpmässiga variationer. Vi behöver en metod för att hantera osäkerheten i en urvalsundersökning. Hypotesprövningen testar om slumpverkan kan ses som orsaken till forskningsresultatet. Vi testar hypotesens giltighet genom en sannolikhetsberäkning.
11 Att ställa upp en hypotes Exempel: Med hjälp av en stickprovsundersökning vill vi utforska om det finns en jämn fördelning av kvinnliga och manliga studenter på Karolinska Institutet. H 0 : Andel kvinnor = Andel män Pröva om andelen kvinnor är skilt från andelen män H 1 : Andel kvinnor Andel män (dubbelsidig mothypotes) Pröva om andelen kvinnor är större än andelen män H 1 : Andel kvinnor > Andel män (enkelsidig mothypotes) Pröva om andelen kvinnor är mindre än andelen män H 1 : Andel kvinnor < Andel män (enkelsidig mothypotes)
12 Hypotesprövningens p-värde Sannolikheten för att man får det resultat man faktiskt observerat (eller mer extremt) i stickprovet under förutsättning att nollhypotesen (H 0 ) är sann. Notera att p är en sannolikhet och måste därför ligga mellan 0 och 1. Exempel: Om nollhypotesen är att andelen kvinnliga studenter vid KI är 50%, och vi i vårt stickprov har hittat 54% kvinnliga studenter så anger p-värdet sannolikheten för att vi skulle hitta ett stickprov med minst 54% kvinnor under förutsättning att det i studiepopulationen (dvs. hela KI) bara finns 50% kvinnor.
13 Hypotesprövningens p-värde Ett lågt p-värde talar för: att det är osannolikt att vi skulle få de observerade mätvärdena om nollhypotesen (ingen skillnad) vore sann. att nollhypotesen är orimlig och kan förkastas.
14 Hypotesprövningens signifikansnivå Hur lågt måste p-värdet vara för att vi skall förkasta nollhypotesen? Denna gräns bestäms genom signifikansnivån α (alfa) Det finns ingen given gräns för α utan denna bestäms utifrån vilken risk man är beredd att ta att dra fel slutsats.
15 Osannolikhet Vi kan välja att definiera en osannolik händelse som en händelse som bara inträffar 1 av 20 gånger (5 av 100) om H 0 är sann (oftare om den är falsk). variationer inom konfidensintervall beror sannolikt på slumpen variationer utanför konfidensintervall beror osannolikt på slumpen jättenormalt (jättesannolikt) normalt (sannolikt) mindre normalt (mindre sannolikt) osannolikt
16 Slumpmässiga fel Typ I fel finns det en skillnad I verkligheten..finns det ingen skillnad Analysen påvisar en skillnad ingen skillnad Sant positiv Falskt negativ Falskt positiv Sant negativ Typ II fel
17 Typ I och typ II fel Vi riskerar ALLTID att begå ett misstag i vårt antagande typ I-fel: förkastar nollhypotesen trots att den är sann (vi finner en falsk skillnad) typ II-fel: accepterar nollhypotesen trots att den är falsk (vi lyckas inte påvisa en sann skillnad) Hur stor risk är vi beredda att ta? högt -värde risk för typ I-fel lågt -värde risk för typ II-fel
18 Hypotesprövningens signifikansnivå Normalt att acceptera 5% risk att slumpen orsakar resultatet (α = 0.05) Vi anger accepterad risknivå (signifikansnivå) för att begå fel i tolkningen av resultatet exempel: =5% ger ett 95% konfidensintervall exempel: =1% ger ett 99% konfidensintervall
19 Tolkning av p-värde Om p-värdet ligger under signifikansnivån kan vi förkasta nollhypotesen och anse den alternativa hypotesen vara mest trolig. Om p-värdet ligger över signifikansnivån kan nollhypotesen inte förkastas och resultatet motsäger inte nollhypotesen. Vi kan då inte uttala oss om hur trolig den alternativa hypotesen är som förklaring. Exempel: Om p-värdet för H 0 : Andel kvinnor = Andel män är 0.09 och α = 0.05 så kan vi ej förkasta H 0. Om p-värdet däremot är 0.02 kan H 0 fökastas.
20 Ensidigt och tvåsidigt test Ett ensidigt test kan användas om man med säkerhet vet att en eventuell förändring bara kan gå i en viss riktning Om man inte vet i vilken riktning en förändring kan gå, måste ett tvåsidigt test väljas. Om man tvivlar tvåsidigt test
21 Hypotesprövningens steg 1. Formulera hypoteser (H 0 och H 1 ) 2. Bestäm signifikansnivå 3. Bestäm testfunktion och beräkna p-värde 4. Bestäm om H 0 kan förkastas eller inte
22 Gruppövning 1. Formulera en enkel frågeställning och en forskningshypotes som går att undersöka empiriskt. 2. Ställ upp H 0 och H 1 3. Anta = Hitta på ett valfritt p-värde Förklara med enkla ord vilka slutsatser ni skulle kunna dra av er undersökning givet 1-4.
23 Exempel på studie med parvis jämförelse Vi undersöker om forin är den samma på långt och kort avstånd Hypoteserna som ska testas H 0 : Forin påverkas inte av fixationsavståndet. H 1 : Forin har inte samma vinkel på långt och nära avstånd.
24 Frekvensdiagram på uppmätta forivärden 5 Histogram PCT PCT på på avstånd avstånd och och nära nära före före behandling behandling PCT 1 LH: N = 17; Mean = 4,1176; StdDv = 3,4257; Max = 12; Min = 0 PCT 1 NH: N = 17; Mean = 11,8824; StdDv = 4,7682; Max = 18; Min = 4 4 No of obs PCT 1 LH PCT 1 NH
25 Frekvensdiagram med normalkurvor på forivärden 5 Histogram PCT på avstånd och nära före behandling PCT 1 LH: N = 17; Mean = 4,1176; StdDv = 3,4257; Max = 12; Min = 0 PCT 1 NH: N = 17; Mean = 11,8824; StdDv = 4,7682; Max = 18; Min = No of obs PCT 1 LH PCT 1 NH
26 Har forin samma vinkel på långt och kort avstånd? Kan skillnaden i forimätningarna uppstått av slumpen? 5 Histogram PCT på avstånd och nära före behandling 4 3 No of obs PCT 1 LH PCT 1 NH
27 Har forin samma vinkel på långt och kort avstånd? Kan skillnaden i forimätningarna uppstått av slumpen? 5 4 Histogram PCT på avstånd och nära före behandling Vi behöver göra en statistisk analys! Medel -95% KI +95% KI 3-95% KI +95% KI -95% KI +95% KI Medel medelv. medelv. SD fördeln. fördeln. PCT 1 LH 4,11 2,36 5,87 3,42-2,59 10,83 PCT 1 NH 11,88 9,43 14,33 4,77 2,54 21,23 No of obs PCT 1 LH PCT 1 NH
28 Statistiska tester Utgår från: typen (kvalitén) av data om data är normalfördelat eller inte hur många grupper som ska jämföras
29 T-test Förhållande mellan en eller två grupper på en kontinuerlig variabel
30 längd (m) T-test Resultatvariabeln alltid på y-axeln Kräver kvantitativ normalfördelad data män kvinnor
31 Lilla t-testet (one-sample t-test) Används vanligen om man vill undersöka om medelvärdet i en grupp skiljer sig från ett hypotetiskt värde Exempel: Vi undersöker patienter som drabbats av en viss åkomma och testar om medelåldern för insjuknande skiljer sig från ett hypotetiskt värde, 60 år. Vi erhåller p = ( = 0.05) Slutsats: medelåldern för insjuknande skiljer sig från 60 år. InStat-demo
32 Oberoende t-test (independent samples t-test) Används vanligen om man vill undersöka skillnader i medelvärde mellan två oberoende grupper vid samma tidpunkt Exempel: Vi undersöker om män och kvinnor som drabbats av åkomman är olika gamla i snitt Vi erhåller p = 0.43 ( = 0.05) Slutsats: vi kan inte med säkerhet säga att det finns en åldersskillnad. InStat-demo
33 Beroende t-test (dependent samples t-test) Används vanligen om man vill undersöka skillnader inom samma grupp (två mätningar) över tid. Mätningarna vid de två tidpunkterna är beroende av varandra eftersom det är samma personer i båda distributionerna. Exempel: Vi undersöker om patienter som drabbats av åkomman svarar positivt på behandling, dvs. om det finns en skillnad (positiv) före och efter behandling Vi erhåller p = ( = 0.05) Slutsats: patienter svarar positivt på behandling InStat-demo
34 Gruppövning Utifrån er tidigare frågeställning, finns det något t-test som verkar tillämpbart för att testa er hypotes? Om inte, försök förklara varför.
35 ANOVA analysis of variance Förhållandet mellan tre eller fler kategorier (förklaringsvariabel) på en kontinuerlig variabel (resultatvariabel)
36 inkomst (kr) ANOVA analysis of variance Resultatvariabeln alltid på y-axeln Kräver kvantitativ normalfördelad data Analysera dataset: LUSvärde läkare ingenjör pilot
37 Chi-2 / Fisher Exakt test Korstabellanalys av data på nominalskale-nivå Nollhypotes: det föreligger ingen skillnad i proportioner mellan grupperna alt.1 Analyserar observerade frekvenser (O) vilka jämförs med förväntade frekvenser (E) alt.2 Jämför två grupper mot varandra som inte är matchade (ej beroende av varandra)
38 Chi-2 / Fisher Exakt test Analysera dataset: Hjärtrytm
39 3. Regressionsanalys
40 3. Regressionsanalys Målet är att skapa en matematisk funktion som bäst passar observerade data Funktionen beskriver det dynamiska sambandet mellan två (eller fler) variabler Funktionen kan användas för att förutsäga (predicera) värdet på en variabel utifrån kunskapen om en annan
41 Enkel linjär regression
42 Vilka statistiska metoder korrelerar med varandra Parametriska metoder Icke parametriska metoder Skillnader mellan oberoende grupper T-test för oberoende data Mann-Whitney test (2 oberoende stickprov) ANOVA/MANOVA Kruskal-Wallis test ( 3 oberoende) Skillnader mellan beroende grupper T-test för beroende data ANOVA Samband mellan variabler Korrelations koefficient Wilcoxon's matched pairs test Friedman's test Spearman Kategorisk data (ingen motsvarighet i parametriska) Chi-square test the Phi coefficient the Fisher exact test
Analytisk statistik. Tony Pansell, optiker Universitetslektor
Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp
Läs merAnalytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens
Analytisk statistik Tony Pansell, Leg optiker Docent, Universitetslektor Analytisk statistik Att dra slutsatser från den insamlade datan. Två metoder:. att generalisera från en mindre grupp mot en större
Läs merHypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Läs merInnehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merFÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Läs merFöreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Läs merHypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
Läs merF14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Läs merBetrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Läs merHur man tolkar statistiska resultat
Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?
Läs merHur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Läs merTvå innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Läs merFöreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek
Läs merFöreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
Läs mer2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Läs merInnehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig steg 1 5 Steg 4 Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 Hypotesprövning
Läs merπ = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.
Stat. teori gk, vt 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 13.1, 13.3-13.4) Or dlista till NCT Nonparametric Sign test Rank Teckentest Icke-parametrisk Teckentest Rang Teckentestet är formellt ingenting
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merParade och oparade test
Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett
Läs merFöreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Läs merGamla tentor (forts) ( x. x ) ) 2 x1
016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att
Läs merSyfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen
Uwe Menzel, 2017 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Syfte: o statistiska test om parametrar för en fördelning o förkasta eller acceptera hypotesen hypotes: = 20 (väntevärdet är 20)
Läs merSTATISTISK POWER OCH STICKPROVSDIMENSIONERING
STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd
Läs mer7.3.3 Nonparametric Mann-Whitney test
7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi
Läs merKursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument)
Kursens upplägg v40 - inledande föreläsningar och börja skriva PM 19/12 - deadline PM till examinatorn 15/1- PM examinationer, grupp 1 18/1 - Forskningsetik, riktlinjer uppsatsarbetet 10/3 - deadline uppsats
Läs merI. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merOBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna
Läs merLTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Läs merF22, Icke-parametriska metoder.
Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merIdag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Läs merSF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska
Läs merFACIT (korrekta svar i röd fetstil)
v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta
Läs merFöreläsning 6. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 6 Statistik; teori och tillämpning i biologi 1 Analysis of Variance (ANOVA) (GB s. 202-218, BB s. 190-206) ANOVA är en metod som används när man ska undersöka skillnader mellan flera olika
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merStandardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merIdag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs merST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.
Läs merAtt välja statistisk metod
Att välja statistisk metod en översikt anpassad till kursen: Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 Lars Bohlin Innehåll Val av statistisk metod.... 2 1. Undersökning av en variabel...
Läs mer7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs mer1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)
1. a) F1(Sysselsättning) F2 (Ålder) F3 (Kön) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) nominalskala kvotskala nominalskala ordinalskala ordinalskala b) En möjlighet är att beräkna
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merStudietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
Läs merAgenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten
Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande
Läs mer, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Läs merFöreläsningsanteckningar till kapitel 9, del 2
Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0
Läs merStatistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018
Statistiska analysmetoder, en introduktion Fördjupad forskningsmetodik, allmän del Våren 2018 Vad är statistisk dataanalys? Analys och tolkning av kvantitativa data -> förutsätter numeriskt datamaterial
Läs merPreliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Läs merBeskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor
Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta
Läs merRepetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merKonfidensintervall, Hypotestest
Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test
Läs merF19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Läs mer34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Läs merSambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.
PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)
Läs merTAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33
Läs merMedicinsk statistik I
Medicinsk statistik I Läkarprogrammet T5 VT 2013 Susanna Lövdahl, Msc, Doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Medicinsk statistik VT-2013 Tre stycken
Läs merBIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta
Läs merTENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )
TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare
Läs merKapitel 10 Hypotesprövning
Sannolikhetslära och inferens II Kapitel 10 Hypotesprövning 1 Vad innebär hypotesprövning? Statistisk inferens kan utföras genom att ställa upp hypoteser angående en eller flera av populationens parametrar.
Läs merTentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Läs merLaboration 3 Inferens fo r andelar och korstabeller
S0005M Statistik2 Lp 4 2016 Laboration 3 Inferens fo r andelar och korstabeller Laborationen behandlar Test av andelar med konfidensintervall och hypotestest Chi två test av oberoende mellan kvalitativa
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall
Läs merST-fredag epidemiologi och biostatistik 2017
ST-fredag epidemiologi och biostatistik 2017 Emma Larsson. ST-läkare, PhD. PMI, KS Solna Gabriella Jäderling. Överläkare, PhD. PMI KS Solna Mikael Eriksson. Specialistläkare, doktorand. PMI KS Solna. Max
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110319)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merTentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas
Läs mer8 Inferens om väntevärdet (och variansen) av en fördelning
8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte
Läs merMatematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merDatorlaboration 2 Konfidensintervall & hypotesprövning
Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs merOMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,
Läs merTMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Läs merTAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning p-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/36
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs merF5 Introduktion Anpassning Korstabeller Homogenitet Oberoende Sammanfattning Minitab
Repetition: Gnuer i (o)skyddade områden χ 2 -metoder, med koppling till binomialfördelning och genetik. Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 Endast 2 av de 13 observationerna
Läs merMatematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11 Laboration Statistiska test 2011-11-15/16 2 Syftet med laborationen är att: Ni skall bekanta er med lite av de funktioner som finns
Läs merFöreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test
Läs merAgenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten
Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande
Läs merFöreläsning 6. Kapitel 7, sid Jämförelse av två populationer
Föreläsning 6 Kapitel 7, sid 186-209 Jämförelse av två populationer 2 Agenda Jämförelse av medelvärden för två populationer Jämförelse av populationsandelar för två populationer Konfidensintervall och
Läs merHöftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Läs merDATORÖVNING 3: MER OM STATISTISK INFERENS.
DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs merEn scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Läs merStatistik Termin 10, Läkarprogrammet, HT16
I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -
Läs merIntroduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Läs mer