Föreläsningsanteckningar till kapitel 8, del 2

Storlek: px
Starta visningen från sidan:

Download "Föreläsningsanteckningar till kapitel 8, del 2"

Transkript

1 Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra. Vi behandler de två fall stickprov i par och två oberoende stickprov där man utifrån vissa förutsättningar kan uttala sig om eventuella skillnader. Vi gör bland annat antaganden om normalfördelning: Delvis för att normalfördelningen är matematisk enkel att hantera och delvis för att man åtminstone för stora datamaterial) kan approximera med en normalfördelning enligt centrala gränsvärdesatsen. Låt oss illustrera de två situationer genom ett konkret exempel: Vi önsker att undersöka effekten av en viss typ medicin på blodtrycket. Vi kan organisera experimentet på ett av följanda sätt: Man tar n personer och mäter blodtrycket hos varje person före och efter behandling med medicinen. Stickprov i par ) Man tar två grupper personer och behandler personerna i den ena grupp med medicinen. Man mäter då blocktrycket på personerna i de två grupperna. Två oberoende stickprov ) Vi betraktar endast tvåsidiga konfidensintervall, men ensidiga konfidensintervall konstrueras från dessa på samma sätt som tidigare.. Stickprov i par Den statistiska modellen är som följer: Vi har n personer. Blodtrycket före och efter behandling hos person i kan ses som stokastiska variabler ξ i Nµ i, σ ) respektiva η i Nµ i +, σ 2 ). Vi tillåter alltså att väntevärdet beror på personen. Parametern anger den systematiska påverkning av medicinen på blodtrycket vi antar att denna är ens för alla jfr Figur 8.8). För att säga att medicinen påverkar blodtrycket skall vi kunna påstå att 0. Vi antar också att standardavvikelsen σ före behandling är samma för alla personer och också att standardavvikelsen σ 2 efter behandling är samma för alla personer. De två standardavvikelser σ och σ 2 kan dock vara olika. Vi antar dessutom att paren ξ, η ),..., ξ n, η n ) är oberoende. Sätt ζ i η i ξ i. Då blir ζ,..., ζ n oberoende. Enligt Sats 6B gäller ) ζ i N, σ 2 + σ2 2.

2 Alltså är ζ,..., ζ n ett stickprov från N, ) σ 2 + σ2 2. Denna situation är känd från tidigare, vi har två fall beroende på om σ och σ 2 är kända eller okända. Sats: Låt ξ i Nµ i, σ ) och η i Nµ i +, σ 2 ) för i,..., n och anta att paren ξ, η ),..., ξ n, η n ) är oberoende. Sätt ζ i η i ξ i och ζ n ζ ζ n ). En intervallskattning för med konfidensgrad α ges av σ och σ 2 kända: där σ σ 2 + σ2 2. I ζ λ α/2 σ n, ζ + λ α/2 ] σ n σ och σ 2 okända: ] I ζ t α/2 n ) σ, ζ + t α/2 n ) σ n n där σ n n i ζi ζ ) 2 är punktskattningen av σ med s-metoden. Exempel: Vi mäter blodtryck före och efter användning av någon medicin på 5 personer. Vi antar att blodtrycketpå person i före och efter är normalfördelade: Nµ i, σ ) respektiva Nµ i +, σ 2 ). Ange ett 95% konfidensintervall för. Person Blodtryck före, x i Blodtryck efter, y i Lösning: Vi får med z i y i x i i z i Vi har n 5 och 5 i z i 40 varav z Då σ och σ 2 är okända beräknes också 5 i z2 i 400, vilket ger s n ) zi 2 n ) 2 n n z i i ) Då α 0.05 ger tabell att t α/2 n ) t ) Konfidensintervallet blir då ] I,obs , , 3.6]. 5 5 Då I innehåller med 95% sannolikhet så verkar medicinen ha blodtryckshöjande effekt. i 2

3 .2 Två oberoende stickprov Den statistiska modellen är som följer: Vi har två grupper med n respektiva personer, där personerna i grupp inte blir behandlad medan personerna i grupp 2 blir behandlad med någon medicin. Blodtrycket hos personerne i grupp ses som stokastiska variabler ξ,..., ξ n från Nµ, σ ). Motsvarende ses blodtrycket hos personerne i grupp 2 ses som stokastiska variabler η,..., η n2 från Nµ 2, σ 2 ). För att säga att medicinen påverkar blodtrycket skall vi kunna påstå att µ µ 2. Alltså är parametern µ µ 2 ett mått för den systematiske påverkning av medicinen på blodtrycket. Vi antar som i fallet Stickprov i par ) att standardavvikelsen σ utan behandling är samma för alla personer i grupp och också att standardavvikelsen σ 2 med behandling är samma för alla personer i grupp 2. De två standardavvikelser σ och σ 2 kan dock vara olika om båda är kända. Om båda är okända måste vi anta att σ σ 2! Se mera nedan). Vi antar dessutom att alle de stokastiska variablernerna ξ,..., ξ n, η,..., η n2 är oberoende. Man vill jämföra µ och µ 2 genom att göra en intervallskattning av µ µ 2. Vi användar punktskattningerna µ ξ ξ ξ n n och µ 2 η η η n2 av µ respektiva µ 2. Enligt Sats 6D gäller ) σ ξ N µ, och n η N ) σ 2 µ 2,. n2 Sats 6B ger då σ ξ η N µ 2 µ 2, + σ2 2 n..2. σ och σ 2 kända Sats: Låt ξ,..., ξ n Nµ, σ ) och η,..., η n2 Nµ 2, σ 2 ) och anta att ξ,..., ξ n, η,..., η n2 är oberoende. Sätt ξ ξ ξ n n och η η η n2. En intervallskattning av µ µ 2 med konfidensgrad α ges av σ I µ µ 2 ξ 2 η λ α/2 + σ2 2 σ 2, ξ η + λ α/2 + σ2 2. n n.2.2 σ och σ 2 okända I detta fall måste σ och σ 2 skattas. Låt σ n ξi n ξ ) 2 och σ2 η i η) 2 i i 3

4 vara punktskattningerna av σ respektiva σ 2 med s-metoden. Tyvärr är fördelningen av ξ η µ µ 2 ) σ 2 n + σ2 2 komplicerad Behrens-Fishers problem ) och en exakt lösning är inte känd! Om man antar σ σ 2 kan man dock visa att ξ η µ µ 2 ) t n ) + )) σ n + där σ n ) σ 2 + ) σ 2 n ) + ) är en sammanvägd punktskattning av σ σ 2. Man kan dessutom visa att σ 2 är en väntevärdesriktig punktskattning av σ 2 σ 2 2. Sats: Låt ξ,..., ξ n Nµ, σ ) och η,..., η n2 Nµ 2, σ 2 ) och anta att ξ,..., ξ n, η,..., η n2 är oberoende. Sätt ξ ξ ξ n n och η η η n2. Anta dessutom att σ σ 2 är okänd. Ett konfidensintervall I µ µ 2 för µ µ 2 med konfidensgrad α ges av I µ µ 2 ξ η t α/2 n + 2) σ +, ξ η + t α/2 n + 2) σ + ]. n n Exempel: Vi mäter blodtryck hos två grupper personer där grupp 2 behandlas med någon medicin. Vi får följande resultater Grupp : n 6, x 7.5, s 9.7 Grupp 2: 4, y 26.8, s Observationerna anses komma från Nµ, σ) respektiva Nµ 2, σ). Bestäm ett 95% konfidensintervall för µ µ 2. Lösning: Den sammanvägda punktskattning av σ blir σobs n ) s 2 + ) s 2 2 n ) + ) 6 ) ) ) + 4 )

5 Vi har α 0.05 varav t α/2 n ) + )) t ) Insättning ger då konfidensintervallet ] I µ µ 2,obs ± , 6.92]. Då 0 ligger inom I µ µ 2,obs verkar medicinen inte påverka blodtrycket ingår inte 5

Föreläsningsanteckningar till kapitel 9, del 2

Föreläsningsanteckningar till kapitel 9, del 2 Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5. February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för

Läs mer

Thomas Önskog 28/

Thomas Önskog 28/ Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood

Läs mer

FÖRELÄSNING 7:

FÖRELÄSNING 7: FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på

Läs mer

Mer om konfidensintervall + repetition

Mer om konfidensintervall + repetition 1/14 Mer om konfidensintervall + repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/2 2011 2/14 Dagens föreläsning Skattningar som slumpvariabler Väntevärde Varians

Läs mer

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,

Läs mer

10. Konfidensintervall vid två oberoende stickprov

10. Konfidensintervall vid två oberoende stickprov TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,

Läs mer

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN): Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

Läs mer

Föreläsning 11, FMSF45 Konfidensintervall

Föreläsning 11, FMSF45 Konfidensintervall Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, FMSF45 Konfidensintervall Stas Volkov 2017-11-7 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F11: Konfidensintervall

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Föreläsning 11, Matematisk statistik Π + E

Föreläsning 11, Matematisk statistik Π + E Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, Matematisk statistik Π + E Johan Lindström 27 Januari, 2015 Johan Lindström - johanl@maths.lth.se FMS012 F11 1/19 Repetition

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

SF1901: Medelfel, felfortplantning

SF1901: Medelfel, felfortplantning SF1901: Medelfel, felfortplantning Jan Grandell & Timo Koski 15.09.2011 Jan Grandell & Timo Koski () Matematisk statistik 15.09.2011 1 / 14 Felfortplantning Felfortplantning kallas propagation of error

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning

Läs mer

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2 Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

TENTAMEN Datum: 14 feb 2011

TENTAMEN Datum: 14 feb 2011 TENTAMEN Datum: 14 feb 011 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF1001 TEN 1 (Matematisk statistik ) Ten1 i kursen HF1001 ( Tidigare kn 6H301), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 13:15-17:15

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 ( uppgifter) Tentamensdatum 2018-08-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Niklas Grip Jourhavande

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola

Läs mer

Föreläsning 12, FMSF45 Hypotesprövning

Föreläsning 12, FMSF45 Hypotesprövning Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN 016-03-1 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall vara

Läs mer

1 Bakgrund DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF Något om Radon och Radonmätningar. 1.2 Statistisk modell

1 Bakgrund DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF Något om Radon och Radonmätningar. 1.2 Statistisk modell LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för punkt- och intervallskattningar.

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

ESS011: Matematisk statistik och signalbehandling Tid: 14:00-18:00, Datum:

ESS011: Matematisk statistik och signalbehandling Tid: 14:00-18:00, Datum: ESS0: Matematisk statistik och signalbehandling Tid: 4:00-8:00, Datum: 20-0-2 Examinatorer: José Sánchez och Bill Karlström Jour: Bill Karlström, tel. 070 624 44 88. José Sánchez, tel. 03 772 53 77. Hjälpmedel:

Läs mer

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-06-03 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Extrauppgifter - Statistik

Extrauppgifter - Statistik Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN): Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 2018-09-19 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2015-08-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

F10 Problemlösning och mer om konfidensintervall

F10 Problemlösning och mer om konfidensintervall 1/13 F10 Problemlösning och mer om konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 22/2 2013 2/13 Dagens föreläsning Problemlösning Skattningar Konfidensintervall

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011 Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN ONSDAG 10/ KL

TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN ONSDAG 10/ KL TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN ONSDAG 1/1 18 KL 8.-13.. Examinator och jourhavande lärare: Torkel Erhardsson, tel. 8 14 78. Tillåtna hjälpmedel: Formelsamling i matematisk statistik utgiven av

Läs mer

Extrauppgifter i matematisk statistik

Extrauppgifter i matematisk statistik Extrauppgifter i matematisk statistik BT 2014 1. Mängden A är dubbelt så sannolik som B. Hur förhåller sig P(A B) till P(B A)? 2. Två händelser A och B har sannolikheter skilda från noll. (a) A och B är

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11 1/11 F11 Två stickprov Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 26/2 2013 2/11 Dagens föreläsning Konfidensintervall när man har ihopparade stickprov Att väga samman skattningar

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Lennart

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson och

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1

LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen TENTA 9MA31, 9MA37, 93MA31, 93MA37 / STN 9GMA5 / STN 1 1 juni 16, klockan 8.-1. Jour: Jörg-Uwe Löbus Tel: 79-687) Tillåtna hjälpmedel är en räknare, formelsamling

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

Tentamen i Dataanalys och statistik för I den 28 okt 2015

Tentamen i Dataanalys och statistik för I den 28 okt 2015 Tentamen i Dataanalys och statistik för I den 8 okt Tentamen består av åtta uppgifter om totalt poäng. Det krävs minst poäng för betyg, minst poäng för och minst för. Eaminator: Ulla lomqvist Hjälpmedel:

Läs mer

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 2015 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Föreläsning 12: Repetition

Föreläsning 12: Repetition Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer