Matematisk statistik för B, K, N, BME och Kemister
|
|
- Leif Lindgren
- för 8 år sedan
- Visningar:
Transkript
1 Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden Statistik Översikt Grundläggande begrepp Exempel Konfidensintervall Chi 2-fördelning t-fördelning Intervall för N(mu,sigma2) Ensidiga konfidensintervall Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 2/23 Gauss Delta metoden Repetition Gauss approximation Delta metoden Statistik Översikt Grundläggande begrepp Exempel Konfidensintervall Chi 2-fördelning t-fördelning Intervall för N(mu,sigma2) Ensidiga konfidensintervall Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 3/23
2 Gauss Delta metoden Linjärisering av g(x) kring punkten μ = E(X) g(x) g(µ) + g (µ)(x µ) g(µ) g(x) µ Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 4/23 Gauss Delta metoden Gauss approximationsformler i en variabel (Kap. 5.2) Y = g(x). Taylorutveckla funktionen g kring μ = E(X) E(Y) g(e(x)) V(Y) g [E(X)] 2 V(X) g(x) g(μ) + (X μ)g (μ) = För en funktion av n variabler fås på samma sätt Y = g(x 1,..., X n ) E(Y) g(e(x 1 ),..., E(X n )) V(Y) ci 2 V(X i ) om X i oberoende där c i = g ( ) E(X 1 ),..., E(X n ) x i Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 5/23 Gauss Delta metoden Delta metoden (CGS + Gaussapproximation) Om X 1, X 2,..., X n är oberoende lika fördelade variabler med E(X i ) = μ, V(X i ) = σ 2 så gäller att g(x n ) N (g(μ), g (μ) ) 2 σ2 n då n stort. Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 6/23
3 Repetition Gauss approximation Delta metoden Statistik Översikt Grundläggande begrepp Exempel Konfidensintervall Chi 2-fördelning t-fördelning Intervall för N(mu,sigma2) Ensidiga konfidensintervall Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 7/23 Exempel: Kvalitetskontroll Vi kontrollerar n st slumpmässigt utvalda komponenter från ett stort parti och ser om de fungerar. Modell: X =antalet trasiga komponenter X Bin(n, p), där p är andelen trasiga kommponenter. p är okänd en parameter i fördelningen. Möjliga frågeställlningar: 1. Vad är en bra uppskattning av p? 2. Hur stor är osäkerheten i uppskattningen? 3. Vilket intervall tror vi p ligger inom? 4. Hur stort måste n vara för att uppnå en tillräckligt liten osäkerhet? Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 8/23 Statistikteori översikt Punktskattning Hur gör man en bra gissning av en okänd storhet? Hur vet man att den är bra? Intervallskattning Hitta istället ett intervall som täcker den okända storheten med en given (stor) sannolikhet. Hypotestest Om gissningen blev.13, kan rätt värde på den okända storheten ändå vara.1? Regression Hur vet vi om två variabler påverkar varandra? Försöksplanering & Faktorförsök Hur konstruerar man studier som på bäst sätt (minst antal mätningar) undersöker effekten av olika faktorer (behandlingar)? Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 9/23
4 Statistikteori: Grundläggande begrepp (Kap. 7.1) Stickprov Ett stickprov, x 1, x 2,..., x n, är observationer av s.v. X 1,..., X n från någon fördelning X i F(θ) där θ är en okänd parameter. Skattning En skattning av θ, θ (x 1,..., x n ) är en observation av den s.v. θ (X 1,..., X n ). Båda betecknas oftast bara med θ. Bra egenskaper för en skattning är Väntevärdesriktig: E(θ ) = θ, inget systematiskt fel. Effektiv: liten varians (osäkerhet) V(θ ). Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Exempel: Mätning med slumpmässigt mätfel Antag att vi vill mäta en storhet μ. Om man tar upp n st mätvärden, x 1,..., x n är dessa observationer av X i = μ + ε i = Rätt värde + Mätfel där ε i är ett slumpmässigt mätfel. Bestäm skattningar av 1. Medelvärdet μ n. 2. Variansen ( σ 2). Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 11/23 Variation i observationer ger variation i skattningen Observationer, x jk μ = x j Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 12/23
5 .8 Observationernas fördelning Skattningarnas fördelning Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 13/23 χ 2 t N(μ, σ 2 ) Ensidiga Repetition Gauss approximation Delta metoden Statistik Översikt Grundläggande begrepp Exempel Konfidensintervall Chi 2-fördelning t-fördelning Intervall för N(mu,sigma2) Ensidiga konfidensintervall Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 14/23 χ 2 t N(μ, σ 2 ) Ensidiga Konfidensintervall (Kap. 7.3) Ett konfidensintervall för en parameter θ täcker rätt värde på θ med sannolikheten 1 α. 1 α kallas konfidensgrad. Vanliga värden är.95,.99 och.999. Ett tvåsidigt konfidensintervall är alltså två skattningar a 1, a 2 så att ( ) P a 1 (X 1,..., X n ) < θ < a 2 (X 1,..., X n ) = 1 α Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 15/23
6 χ 2 t N(μ, σ 2 ) Ensidiga Andelen 1 α av intervallen täcker rätt värde i långa loppet 1 st 95% konfidensint. för µ i N(µ,2) st 95% konfidensint. för µ i N(µ,σ) Intervall nr Intervall nr Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 16/23 χ 2 t N(μ, σ 2 ) Ensidiga χ 2 -fördelning (chi-två) (Kap ) Y χ 2 (f). f kallas antal frihetsgrader. α-kvantil: χ 2 α(f). Tabell 4..6 χ 2 fördelning med f = 1, 3, 5, 15 Om X 1,..., X n N ( μ, σ 2) och oberoende så gäller 1 σ 2 1 σ 2 (X i μ) 2 χ 2 (n) (X i X) 2 χ (n 1).4.2 f = 1 f = 3 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 17/23 χ 2 t N(μ, σ 2 ) Ensidiga Student s t-fördelning (Kap ) X t(f). f kallas antal frihetsgrader. α-kvantil: t α (f). Tabell 3. Om X N (, 1) och Y χ 2 (f) är oberoende gäller X Y/f t(f) och speciellt för X i N ( μ, σ 2) där X μ S/ t(n 1) n X = 1 n.4.2 X i och S 2 = 1 n 1 t fördelning med f = 1, 2, 4, 8, f = 1 f = (X i X) 2 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 18/23
7 χ 2 t N(μ, σ 2 ) Ensidiga Konfidensintervall för μ i N ( μ, σ 2) (Kap. 7.3) x 1,..., x n observationer av X i N ( μ, σ 2) σ 2 känd: σ I μ = x ± λ α/2 n = μ ± λ α/2 D(μ ) σ 2 okänd: I μ = x ± t α/2 (n 1) s n = μ ± t α/2 (f)d(μ ) Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 2/23 χ 2 t N(μ, σ 2 ) Ensidiga Exempel: Sockerinnehåll i betor Sockerbetor har i regel ett sockerinnehåll på 16 18% (enligt Dansukkers hemsida). Anta att sockerinnehållet i en godtycklig beta beskrivas av X i N ( μ, σ 2) med σ 2 okänd. I ett visst betlass undersökte man sockerhalten hos 25 slumpmässigt utvalda betor x i = (x i x) 2 = 4.8 Gör ett 95%-konfidensintervall för den förväntade sockerhalten i betlasset. Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 21/23 χ 2 t N(μ, σ 2 ) Ensidiga Konfidensintervall för σ 2 i N ( μ, σ 2) (Kap ) x 1,..., x n observationer av X i N ( μ, σ 2) Ett 1 α konfidensintervall för σ 2 ges av ( ) Iσ 2 (n 1)s 2 (n 1)s 2 = χ 2 α/2 (n 1), χ 2 1 α/2 (n 1) Där s 2 = 1 n 1 (x i x) 2 och χ 2 α/2 (n 1) är χ2 -fördelningens kvantiler. Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 22/23
8 χ 2 t N(μ, σ 2 ) Ensidiga Ensidiga konfidensintervall (Kap ) Konfidensintervall kan även vara uppåt- eller nedåt begränsade. 1. Ta ena gränsen i ett tvåsidigt konfidensintervall 2. Byt ut α/2 α för att få rätt konfidensgrad 3. Låt den andra gränsen bli så stor/liten som möjligt Ex. Om det tvåsidiga intervallet ges av x ± λ α/2 σ n är Nedåt begränsat intervall: ( x λ α σ n, ) Uppåt begränsat intervall: (, x + λ α σ n ) Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 23/23
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett
Föreläsning 11, Matematisk statistik Π + E
Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, Matematisk statistik Π + E Johan Lindström 27 Januari, 2015 Johan Lindström - johanl@maths.lth.se FMS012 F11 1/19 Repetition
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,
Föreläsning 11, FMSF45 Konfidensintervall
Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, FMSF45 Konfidensintervall Stas Volkov 2017-11-7 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F11: Konfidensintervall
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Johan Lindström Repetition Johan Lindström - johanl@maths.lth.se FMS86/MASB2 1/44 Begrepp S.V. Fördelning Väntevärde Gauss CGS Grundläggande begrepp (Kap.
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Thomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 20 september 2017 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/20 : Poisson & Binomial för diskret data Johan
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
F9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
Föreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av
Föreläsning 6, Matematisk statistik Π + E
Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora
en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.
February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning
SF1901: Medelfel, felfortplantning
SF1901: Medelfel, felfortplantning Jan Grandell & Timo Koski 15.09.2011 Jan Grandell & Timo Koski () Matematisk statistik 15.09.2011 1 / 14 Felfortplantning Felfortplantning kallas propagation of error
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 2 & 9 oktober 217 Johan Lindström - johanl@maths.lth.se FMSF7/MSB2 F11 1/32 Repetition Multipel linjär regression
Föreläsning 12, FMSF45 Hypotesprövning
Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 21 september 2016 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/21 för diskret data : Poisson & Binomial för
Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ
Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 8 Johan Lindström 9 oktober 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F8 1/26 process Johan Lindström - johanl@maths.lth.se FMSF45/MASB3
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Mer om konfidensintervall + repetition
1/14 Mer om konfidensintervall + repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/2 2011 2/14 Dagens föreläsning Skattningar som slumpvariabler Väntevärde Varians
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
Matematisk statistik för D, I, Π och Fysiker
Sannolikhetsteori Stokastisk variabel 2D stokastisk variabel Linjärkombination Gauss approximation Poissonprocess Markovkedjor Statistik Konfidensintervall Hypotesprövning Regression Multipel reg. Matematisk
Föreläsningsanteckningar till kapitel 8, del 2
Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Uppgift 1. f(x) = 2x om 0 x 1
Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...
Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,
10. Konfidensintervall vid två oberoende stickprov
TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,
LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
Föreläsning 6, FMSF45 Linjärkombinationer
Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)
F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11
1/11 F11 Två stickprov Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 26/2 2013 2/11 Dagens föreläsning Konfidensintervall när man har ihopparade stickprov Att väga samman skattningar
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
SF1901 Föreläsning 14: Felfortplantning, medelfel, Gauss approximation, bootstrap
SF1901 Föreläsning 14: Felfortplantning, medelfel, Gauss approximation, bootstrap Jan Grandell, Gunnar Englund & Timo Koski 03.03.2016 Jan Grandell, Gunnar Englund & Timo Koski Matematisk statistik 03.03.2016
Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...
Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för
LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger
LÖSNINGAR TILL Matematisk statistik Tentamen: 2015 08 18 kl 8 00 13 00 Matematikcentrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Lunds tekniska högskola MASB02 Matematisk statistik för
F10 Problemlösning och mer om konfidensintervall
1/13 F10 Problemlösning och mer om konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 22/2 2013 2/13 Dagens föreläsning Problemlösning Skattningar Konfidensintervall
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Stickprovsvariabeln har en fördelning / sprindning
unktskattning räcker ofta inte Sannolikhet och statistik Intervallskattning HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Figur: Mätresultat me stor varians Stickprovsvariabeln har en förelning
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1907, SF1908 samt SF1913 SANNOLIKHETSTEORI OCH STATISTIK, ONS- DAGEN DEN 9:E JANUARI 2013 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Föreläsningsanteckningar till kapitel 9, del 2
Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Grundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Lufttorkat trä Ugnstorkat trä
Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se
Föreläsning 17, Matematisk statistik Π + E
Sannolikhetsteori Statistik Föreläsning 17, Matematisk statistik Π + E Sören Vang Andersen 26 febuar 2015 Sören Vang Andersen - sva@maths.lth.se FMS012 F17 1/63 Stokastisk variabel En stokastisk variabel
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
f(x) = 2 x2, 1 < x < 2.
Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 2018-09-19 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
1 e (λx)β, för x 0, F X (x) = 0, annars.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 30:E MAJ 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Föreläsning 15: Faktorförsök
Föreläsning 15: Faktorförsök Matematisk statistik Chalmers University of Technology Oktober 17, 2016 Ensidig variansanalys Vi vill studera om en faktor A påverkar en responsvariabel. Vi gör totalt N =
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 5:E APRIL 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Repetition. Plus lite av det om faktorförsök som inte hanns med förra gången
Repetition Plus lite av det om faktorförsök som inte hanns med förra gången Funkar som 22, men formelsamlingen kan hjälpa Bra schema men ordningen stämmer inte Den observante noterar att kolonn AB fås
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 6 Johan Lindström oktober 8 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Summa
a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL
TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-
Repetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Matematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar
SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
MATEMATISK STATISTIK AK FÖR F, E, D, I, C, Π; FMS 012 FÖRELÄSNINGSANTECKNINGAR I
MATEMATISK STATISTIK AK FÖR F, E, D, I, C, Π; FMS 012 FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI JOAKIM LÜBECK Mars 2014 Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM FÖRELÄSNINGSANTECKNINGAR
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:
Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.
UPPSALA UNIVERSITET Matematiska institutionen Erik Broman, Jesper Rydén TENTAMEN I MATEMATISK STATISTIK Sannolikhet och statistik 1MS5 214-1-11 Skrivtid: 8.-13.. För betygen 3, 4 resp. 5 krävs 18, 25 resp.
Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014
Föreläsning 1. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 Varför tillämpad statistik? Användningsområden i medicin, naturvetenskap
Statistiska metoder för säkerhetsanalys
F7: Bayesiansk inferens Klassisk vs Bayesiansk Två problem Klassisk statistisk inferens Frekventistisk tolkning av sannolikhet Parametrar fixa (ofta okända) storheter Skattningar och konfidensintervall
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling