F2 SANNOLIKHETSLÄRA (NCT )
|
|
- Axel Lundberg
- för 7 år sedan
- Visningar:
Transkript
1 Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT ) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive Probability Slumpförsök Utfall Utfallsrum Händelse Mängd Delmängd Union Snitt Komplement Varandra uteslutande oförenliga, disjunkta Uttömmande Sannolikhet 1
2 Slumpförsök Vi kommer att tala om sannolikheter i samband med slumpförsök. Ett slumpförsök är ett försök, som kan upprepas under likartade förhållanden, och där resultatet vid varje enskild upprepning inte kan förutsägas med säkerhet. Försök i vid mening aktivitet, process, förlopp. Exempel på slumpförsök: Tärningskast (1, 2, 3, 4, 5 eller 6?) Lottdragning (Vinst eller ej?) Slumpmässigt urval från en population (Vilka blir utvalda?) Befruktning av äggcell (Pojke eller flicka?) Radioaktivt sönderfall (Antal partiklar under ett visst tidsintervall?) Industriell tillverkning av en enhet. (Riktig eller felaktig?) 2
3 Utfall och utfallsrum Resultatet av ett slumpförsök kallas för ett utfall. Mängden av alla möjliga utfall kallas för försökets utfallsrum. Betecknas: S. OBS Vi tänker oss att utfallen är definierade så att ett och endast ett utfall inträffar varje gång försöket utförs. Ex.: Ge förslag till utfallsrum. Försök: Ett kast med en tärning Utfallsrum: S = Försök: Befruktning av en äggcell Utfallsrum: S = Försök: Två kast med ett mynt Utfallsrum: S = 3
4 Händelser Utfallen är de elementära beståndsdelarna i ett utfallsrum. En händelse är en samling av ett eller flera utfall. Vi säger att händelsen inträffar om och endast om något av utfallen i motsvarande samling av utfall inträffar. För varje tänkbar händelse kan man räkna upp de utfall, som innebär att händelsen inträffar. Ex.: Tärningskast. Sex möjliga utfall. S = {1, 2, 3, 4, 5, 6}. Vi ser på händelsen att få ett jämnt antal prickar. Vart och ett av utfallen 2, 4 och 6 innebär att händelsen inträffar. Händelsen jämnt antal prickar motsvaras alltså av delmängden {2, 4, 6}. 4
5 Ex.: Tärningskast. S = {1, 2, 3, 4, 5, 6}. Definiera olika händelser som delmängder av utfallsrummet. Händelse Delmängd A = att få ett udda antal A = prickar B = att få högst 3 B = prickar C = att få sexa C = D = att inte få sexa D = E = att få en sjua E = 5
6 Mer om händelser Händelse = delmängd av utfallsrummet S. Händelser betecknas ofta A, B, C etc. Med symboler och begrepp från mängdläran kan vi bilda nya händelser och uttrycka egenskaper hos händelser. T.ex.: Union: A B Snitt: A B Komplement: A A och B disjunkta Händelsen att A eller B (eller båda) inträffar Händelsen att både A och B inträffar Händelsen att A inte inträffar A och B kan inte inträffa samtidigt (är varandra uteslutande) Rita Venn-diagram. 6
7 Ex: Tärningskast. S = {1, 2, 3, 4, 5, 6}. Låt A = händelsen Udda antal = {1, 3, 5} B = händelsen Högst tre = {1, 2, 3} A B = A B = A = B = A B = A B = A A = A A = Ex: För godtyckliga A och B, illustrera med Venndiagram att: A kan uttryckas som en union av två disjunkta delar: A = ( A B) ( A B). A B kan uttryckas som en union av två disjunkta delar: A B = A ( A B). 7
8 Vad är sannolikhet? Sannolikheten, P(A), för händelsen A är ett slags mått på hur säkert det är att händelsen skall inträffa. P(A) är ett tal mellan noll och ett. NCT ger tre olika sannolikhetsdefinitioner: 1. Den klassiska sannolikhetsdefinitionen. Ett slumpförsök har n möjliga utfall, alla lika möjliga. Av dessa utfall är det n A stycken som innebär att händelsen A inträffar. Då är n ( A) = = n P A antal"gynnsamma"utfall antal möjliga utfall Kommentar: Vad menas med att de möjliga utfallen skall vara lika möjliga? Oklart. Om det betyder att utfallen skall ha lika sannolikhet, så förutsätter ju den klassiska sannolikhetsdefinitionen att man redan vet vad sannolikhet är. Då är det egentligen inte fråga om någon definition utan snarare en regel som talar om hur man kan beräkna sannolikheten för en händelse, ifall man redan vet att alla utfall har lika sannolikhet. 8
9 2. Den frekventistiska sannolikhetsdefinitionen. Sannolikheten för händelsen A uppfattas som den relativa frekvens med vilken A inträffar vid en mycket lång serie upprepningar av slumpförsöket: P(A) relativa frekvensen för händelsen A i det långa loppet. Kommentar: Man tänker sig att den relativa frekvensen för A i det långa loppet tenderar att stabilisera sig på en viss nivå. Hur vet man att det är så? Man brukar hänvisa till gjorda iakttagelser av de relativa frekvensernas stabilitet (se kommande exempel). 3. Den subjektiva sannolikhetsdefinitionen. Sannolikhet antas uttrycka grad av tilltro. P(A) = mått på hur starkt en person tror på påståendet att A skall inträffa Kommentar: (1) Olika personer kan ha olika stark tilltro till ett och samma påstående. (2) Inget krav att slumpförsöket skall kunna upprepas. 9
10 Ex: Relativa frekvensernas stabilitet. En serie på 500 kast med ett mynt har simulerats med Minitab. Relativa frekvensen krona vid växande antal kast har registrerats. Relativ frekvens krona vid växande antal kast med ett mynt 1,0 0,9 Rel. frekv. krona 0,8 0,7 0,6 0,5 0,4 0,5 0,3 0, Kast nr
11 Några räkneregler för sannolikheter Vi utgår från tre grundantaganden: 1. Vi har ett slumpförsök med utfallsrummet S = {O 1, O 2,, O n } 2. Varje utfall, O i, har en sannolikhet P(O i ) (i = 1, 2,, n) 3. Dessa sannolikheter uppfyller villkoren 0 P(O i ) 1 (i = 1, 2,, n) P(O 1 ) + P(O 2 ) + + P(O n ) = P( O i ) = 1 n i= 1 Vi betraktar alltså ett slumpförsök med ändligt många utfall, där varje utfall har sin givna sannolikhet, och där dessa sannolikheter uppfyller villkoren ovan. Vidare utgår vi från följande definition: 11
12 Definition: Sannolikheten för en händelse A är lika med summan av sannolikheterna för de utfall som innebär att A inträffar, dvs. P(A) = A P ( O i ) Av dessa antaganden, plus definitionen, följer formellt ett antal resultat. Vid lösning av sannolikhetsproblem har man ofta användning av dessa resultat, vilka i fortsättningen får betraktas som etablerade räkneregler. Några räkneregler följer här (försök bevisa några). Fler kommer längre fram. För varje händelse A är 0 P(A) 1. P(S) = 1 Om A och B är disjunkta händelser, så är P(A B) = P(A) + P(B) Om A 1, A 2,, A k är parvis disjunkta, så är P(A 1 A 2 A k ) = P(A 1 )+P(A 2 )+ +P(A k ) 12
13 Några exempel med likformig sannolikhetsmodell Om alla utfall i utfallsrummet har samma sannolikhet, har vi en likformig sannolikhetsmodell. Om S = {O 1, O 2,, O n }, så innebär en likformig slh-modell att P(O 1 ) = = P(O n ) = 1/n. Ex.: Tärningskast, P(1) = = P(6) = 1/6. Vid slumpförsök med likformig slh-modell kan slh för en händelse A beräknas såsom: na P( A) =, n där n = antal möjliga utfall av försöket n A = antal utfall därav, som innebär att A inträffar (= antal gynnsamma utfall) (Det här är ju den klassiska sannolikhetsdefinitionen.) 13
14 Ex.: Lotteri med 100 lotter varav 5 är vinstlotter. Välj en lott på måfå (dvs. med lika slh för alla lotter). Vad är slh för vinst? P(Vinst) = Ex.: Två kast med en tärning. 36 möjliga utfall (se figur nedan), som alla antas ha lika slh. Första 1 kastet Andra kastet P(Högst två prickar i första kastet) = P(Summan lika med 5) = P(Summan större än 8) = P(Åtminstone en sexa) = 14
15 Vid beräkning av antal möjliga och antal gynnsamma utfall har man ibland nytta av kombinatorik; se följande exempel, som handlar om OSU. OSU (obundet slumpmässigt urval) från en ändlig population betyder att alla möjliga delmängder av given storlek skall ha lika sannolikhet att väljas ut. Ex.: Tre personer skall väljas genom OSU från en grupp med åtta personer, varav fyra är män och fyra är kvinnor. a) Vad är slh att en man och två kvinnor blir valda? Antal möjliga utfall = Antal gynnsamma utfall = Slh = b) Vad är slh att få tre män? Antal möjliga utfall = Antal gynnsamma utfall = Slh = 15
16 Generalisering av föregående problem: Population med N individer, av vilka N 1 har en viss egenskap (och övriga N-N 1 saknar egenskapen). Genom OSU (utan återläggning) skall n personer väljas ut. (OSU innebär att alla delmängder av storlek n skall ha lika slh att väljas.) Vad är slh att få exakt x personer som har den aktuella egenskapen (och n-x personer som inte har egenskapen)? P(x personer med egenskapen) = N ( x 1 N N )( n x N ( ) n 1 ) 16
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Sannolikhetslära (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Läs merFöreläsning 1. Grundläggande begrepp
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 1 Sannolikhetsteori (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Läs merIntroduktion till sannolikhetslära. Människor talar om sannolikheter :
F9 Introduktion till sannolikhetslära Introduktion till sannolikhetslära Människor talar om sannolikheter : Sannolikheten att få sju rätt på Lotto Sannolikheten att få stege på en pokerhand Sannolikheten
Läs merKap 2: Några grundläggande begrepp
Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de
Läs merMatematisk statistik - Slumpens matematik
Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik
Läs merhändelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning
Läs merTMS136. Föreläsning 2
TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast
Läs merF3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att
Stat. teori gk, ht 2006, JW F3 SANNOLIKHETSLÄRA (NCT 4.3-4.4) Ordlista till NCT Complement rule Addition rule Conditional probability Multiplication rule Independent Komplementsatsen Additionssatsen Betingad
Läs merStatistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov
OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population
Läs merFöreläsning 2. Kapitel 3, sid Sannolikhetsteori
Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,
Läs merS0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist
Föreläsning 1 4.1 Slumpässighet 4.2 Sannolikhetsmodeller Viktiga grundbegrepp Slumpmässig (eng: random) Ett fenomen är slumpmässigt om individuella resultat är osäkra, men resultat alltid förekommer med
Läs merTMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker
Läs merMatematisk statistik 9hp för: C,D,I, Pi
Matematisk statistik 9hp för: C,D,I, Pi Föreläsning 1, Sannolikhet Stas Volkov September 12, 2017 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F1: Sannolikhet 1/27 Tillämpningar Praktiska detaljer Matematisk
Läs merF5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel uwe.menzel@slu.se 23 augusti 2017 Slumpförsök Ett försök
Läs merSannolikhetsbegreppet
Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34
Läs mer1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
Läs merMatematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet
Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska
Läs mer1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5
1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på
Läs merKombinatorik och sannolikhetslära
Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i
Läs merFöreläsning 1, Matematisk statistik Π + E
Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori
Läs merStatistikens grunder HT, dagtid Statistiska institutionen
Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet
Läs merTAMS79: Föreläsning 1 Grundläggande begrepp
TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.
Läs merF6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
Läs merSannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om
Läs merFöreläsning 1, Matematisk statistik för M
Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:
Läs merSannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann
Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,
Läs merUtfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse
Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de
Läs merF9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Läs merKolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog
Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet
Läs merTMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns
Läs merSF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 65 Många tänker på tabeller 1 när de hör ordet statistik.
Läs merFöreläsning G70, 732G01 Statistik A
Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde
Läs merStatistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik
Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten
Läs merMatematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare
Läs merSF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 3. TK 3.11.2017 TK Matematisk statistik 3.11.2017 1 / 53 Probability: What is it? Probability is a number between 0 and 1 that predicts the (relative) frequency
Läs merReliability analysis in engineering applications
Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 26 mars, 2015 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Läs merFinansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Läs merTMS136. Föreläsning 2
TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 23 mars, 2015 KURSINFORMATION Blom m.fl. Sannolokhetsteori och statistikteori
Läs merFinansiell statistik, vt-05. Sannolikhetslära. Mängder En mängd är en samling element (objekt) 1, 2,, F2 Sannolikhetsteori. koppling till verkligheten
Johan, Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F2 Sannolikhetsteori Sannolikhetslära koppling till verkligheten mängdlära räkna med sannolikheter definitioner
Läs merSannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14
1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet
Läs merStat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
Läs merSF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Läs mer4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Läs merSlumpförsök för åk 1-3
Modul: Sannolikhet och statistik Del 3: Att utmana elevers resonemang om slump Slumpförsök för åk 1-3 Cecilia Kilhamn, Göteborgs Universitet Andreas Eckert, Linnéuniversitetet I följande text beskrivs
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,
Läs merBetingad sannolikhet och oberoende händelser
Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger
Läs mer7-1 Sannolikhet. Namn:.
7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för
Läs merExperimentera i sannolikhet från teoretisk sannolikhet till data
Modul: Sannolikhet och statistik Del 3. Sannolikhet kopplingen mellan teoretisk modell och data Experimentera i sannolikhet från teoretisk sannolikhet till data Per Nilsson, Örebro universitet Sannolikhet
Läs merExempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift
Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan
Läs merFöreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Läs mer{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}
Mängder grundbegrepp En mängd är en samling objekt Ex: { } { } A = 0, 1 B = 0 C = { 7, 1, 5} tomma mängden (har inga element) D = { 1, 2, 3,, 10} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} kallas element i mängden
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2015 Jan Grandell & Timo Koski () Matematisk statistik 21.01.2015 1 / 1 Repetition:
Läs merInstitutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).
UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel
Läs merMATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus
MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar
Läs merÖvning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:
Läs merFöreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter
Läs merFMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet Anna Lindgren 18 januari 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Tillämpningar Praktiska
Läs mer1 Mätdata och statistik
Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt
Läs merFinansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Läs merSOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.
Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms
Läs merSTOKASTIK Sannolikhetsteori och statistikteori med tillämpningar
2007-10-08 sida 1 # 1 STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar Sven Erick Alm och Tom Britton Typsatt med liber1ab 2007-10-08 1 2007-10-08 sida 2 # 2 2007-10-08 sida i # 3 Innehåll
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad
Läs merNågot om sannolikheter, slumpvariabler och slumpmässiga urval
LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form
Läs merSF1901: Övningshäfte
SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på
Läs merMatematisk statistik
Matematisk statistik för STS vt 2004 2004-03 - 23 Bengt Rosén Matematisk statistik Ämnet matematisk statistik omfattar de två delområdena Sannolikhetsteori Statistikteori Bloms A - bok behandlar sannolikhetsteori,
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology Mars 23, 2015 Lärare och kurslitteratur : Rum: E-mail: Anders Hildeman: Rum: E-mail: Kursansvarig och föreläsare H3018
Läs merSannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?
Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer
Läs mer4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
Läs merKapitel 2. Grundläggande sannolikhetslära
Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.
Läs merSF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology August 29, 2016 Lärare : Rum: E-mail: Anders Hildeman: Rum: E-mail: Sandra Eriksson Barman: Rum: E-mail: Kursansvarig
Läs merSF1914/SF1916: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.
SF1914/SF1916: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 27 augusti, 2018 KURSINFORMATION Blom m.fl. Sannolikhetsteori
Läs merBegreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Läs merAktiviteten, (Vad är mina chanser?), parvis, alla har allt material,
Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material, Hur stor är chansen? NAMN Ni kommer att utvärdera olika spel för att hjälpa er förstå sannolikheten. För varje spel, förutsäga vad som
Läs merExempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 70 Många tänker på tabeller 1 när de hör ordet statistik.
Läs merSannolikhetslära har i Lgr 11 fått en mer framträdande roll än i tidigare
Birgit Aquilonius Konsten att simulera sannolikheter Hur sannolikt är det att två straffkast i basketboll går i? Författaren delar här med sig av erfarenheter från laborationer om sannolikheter som hon
Läs merLektion 1: Fördelningar och deskriptiv analys
Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över
Läs merFÖRELÄSNING 3:
FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data
Läs merSF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Läs merBegreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Läs merAnna: Bertil: Cecilia:
Marco Kuhlmann 1 Osäkerhet 1.01 1.02 1.03 1.04 1.05 Intelligenta agenter måste kunna hantera osäkerhet. Världen är endast delvist observerbar och stokastisk. (Jmf. Russell och Norvig, 2014, avsnitt 2.3.2.)
Läs mer14.1 Diskret sannolikhetslära
14.1 Diskret sannolikhetslära 14.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av utfall kallas försökets utfallsrum. Varje delmängd av
Läs merI kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.
Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går
Läs merMatematisk statistik för D, I, Π och Fysiker. Matematisk statistik slumpens matematik. Tillämpningar för matematisk statistik.
Matematisk statistik för D, I, Π och Fysiker Föreläsning 1 Johan Lindström 4 september 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F1 2/29 Matematisk statistik slumpens matematik Sannolikhetsteori:
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Läs merSannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se
May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment
Läs merMängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann
Marco Kuhlmann 1 Diskret matematik handlar om diskreta strukturer. I denna lektion kommer vi att behandla den mest elementära diskreta strukturen, som alla andra diskreta strukturer bygger på: mängden.
Läs mer(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.
Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden
Läs merSannolikhetslära. Uppdaterad:
Sannolikhetslära Uppdaterad: 8 Har jag använt någon bild som jag inte får använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [] Ex : Singla slant två gånger [] Ex : Två tärningar
Läs mer