LMA522: Statistisk kvalitetsstyrning
|
|
- Thomas Karlsson
- för 5 år sedan
- Visningar:
Transkript
1 Föreläsning 1
2 Föreläsningens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från boken.
3 Kvalitet En tillverkad produkt (eller utförd tjänst) måste leva upp till vissa krav för att vara användbar. Vad dessa krav är bestäms av yttre faktorer såsom marknad och lagstiftning men också av inre faktorer såsom ideal, stolthet, produktionsprocess, etc. Kvalitet = uppfyllande av krav/förväntningar
4 Exempel: Vilka skor har bäst kvalitet? 1 Sko 1: Håller 3 år med 70% sannolikhet men 1 år med 30% sannolikhet. 2 Sko 2: Håller 2 år med 100% sannolikhet.
5 Exempel: Vilka skor har bäst kvalitet? 1 Sko 1: Håller 3 år med 70% sannolikhet men 1 år med 30% sannolikhet. 2 Sko 2: Håller 2 år med 100% sannolikhet. Oftast efterfrågar marknaden förutsägbarhet. Sko 2 skulle därför vara att föredra även om den förväntade livslängden är längre för sko 1. Bra kvalitet är oftast associerat med liten spridning.
6 Vad kan dålig kvalitet bero på?
7 Vad kan dålig kvalitet bero på? Dålig kvalitet hos inköpta komponenter. Problem med tillverkningsprocessen. Kraven är orealistiska. Kursen berör inte hur kvaliteten kan förbättras. Istället kommer vi gå igenom hur man upptäcker bristande kvalitet.
8 Hur upptäcker man bristande kvalitet?
9 Hur upptäcker man bristande kvalitet? Man kontrollerar de producerade enheterna och ser om de lever upp till kraven. Man kontrollerar då en eller era egenskaper (kvalitetsvariabler) hos enheterna. Om man kontrollerar alla de producerade enheterna kallas det för allkontroll? I många fall är inte allkontroll möjligt. Inspektionen kan vara för dyr för att genomföra på alla enheter eller inspektionen kan kräva att enheten förstörs. Istället får man kontrollera ett urval av de producerade enheterna och dra en slutsats om alla enheter från resultatet. (acceptanskontroll).
10 Acceptanskontroll Under acceptanskontroll så kontrollerar man n enheter slumpvist utvalda från de N möjliga. På grund av slumpen i vilket urval man väljer så kan man, givet samma parti av enheter, dra olika slutsatser om man gör om kontrollen era gånger. Slumpen behov av statistik!
11 Den uppmätta kvalitetsvariabeln kan vara antingen kvalitativ eller kvantitativ. Denition: Kvalitativ kvalitetsvariabel Från kontrollen av en enhet kategoriseras den till en grupp (antingen felfri eller defekt). Denition: Kvantitativ kvalitetsvariabel Från kontrollen av en enhet tilldelas den ett tal. Från detta tal kan man se hur långt bort från kravgränserna enheten benner sig. En kvantitativ kvalitetsvariabel ger lite mer information. Det är dessutom lätt att kategorisera även den som felfri eller defekt beroende på om värdet är inom kvalitetsgränserna.
12 Acceptanskontroll enligt attributmetoden Om kvalitetsvariabeln är kvalitativ så används acceptanskontroll enligt attributmetoden. 1 Dra ett urval från ett parti av enheter. 2 Klassicera enheterna från urvalet som defekta eller felfria. 3 Avgör om hela partiet skall accepteras eller avvisas baserat på antalet defekta och felfria i urvalet.
13 Acceptanssannolikheten, L(p), beror på den totala sannolikheten att en enhet är defekt, p = D N, samt n. Här, är N totalt antal enheter, D totalt antal defekta enheter och n är stickprovsstorleken. p är sanolikheten att en slumpvist vald enheter är defekt. Grafen av L(p) och p kallas för OC-kurvan (Operating Characteristic Curve).
14 L(p) är avtagande och idealt vill man att den skall se ut som i gur 1a. Det gör den vid allkontroll. Vid acceptanskontroll kommer kurvan tyvärr att få ett ackare utseende, gur 1b. Detta beror på slumpen i stickprovsurvalet. (a) Allkontroll. (b) Acceptanskontroll med n < N.
15 Målet med att designa en acceptanskontrollplan är att justera OC-kurvan så att den passar behoven så bra som möjligt. Typiskt så vill man hålla n liten men samtidigt se till så att OC-kurvan blir så optimal som möjligt. D.v.s hög sannolikhet att acceptera för små p-värden och låg sannolikhet att acceptera för höga p-värden.
16 Enkel provtagningsplan Denition: Enkel provtagningsplan Välj ut n stycken enheter från de N existerande i partiet. Om d < r, acceptera partiet. N: Partiets storlek Antalet enheter som existerar i partiet. n: provgruppsstorleken Antalet enheter som kontrolleras. d: Antalet defekta enheter i provgruppen. r: avvisningstalet En, på förhand bestämd, gräns för hur många enheter som minst måste vara defekta för att man skall avvisa partiet. c: acceptanstalet Hur många enheter som mest kan tillåtas vara defekta i provgruppen utan att avvisa partiet. (c = r 1).
17 Enkel provtagningsplan Antal defekta enheter som upptäcks motsvarar ju det klassiska problemet med att man har en urna med N:st bollar av två färger, D är blå och resten är gröna. Man plockar sedan upp n:st ur urnan (utan återläggning). Vad är sannolikhetsfördelningen för antal blå bollar som man plockat upp?
18 Enkel provtagningsplan Vi vet sedan de första veckorna i kursen att detta kan modelleras med en slumpvariabel, ξ, som är hypergeometriskt fördelad, ξ Hyp(N, n, p), där p = D N. Sannolikheten att acceptera partiet, L(p) = P(ξ < r) = P(ξ c). P(ξ c) = c i=0 ( Np i )( N Np n i ( N n) )
19 Som vi minns så är den hypergeometriska fördelningen lite jobbig att räkna på. Om vi skall räkna för hand kan vi istället använda oss av några approximationer från tidigare i kursen. Approximationer: Hypergeometrisk fördelning Binomialfördelning: Ifall Poissonfördelning: Ifall Normalfördelning: Ifall ( ξ N n N < 0.1 ξ Bin(n, p) n N + p < 0.1 och n > 10 ξ Po(λ = Np) n N < 0.1 och np(1 p) > 10. µ = np, σ 2 = N n np(1 p) N 1 )
20 Vanligtvis i den här kursen kommer vi approximera den Hypergeometriska fördelningen med en binomialfördelning. Även denna är lite småjobbig att räkna på men vi kan ta fram acceptanssannolikheter med hjälp av tabeller för binomialfördelningen eller ett binomialfördelningsnomogram.
21
22 Exempel: Räkna ut acceptanssannolikheten Ett parti om 1000 enheter innehåller 240 defekta. Vad är acceptanssannolikheten om provgruppsstorleken är 10 och avvisningstalet är 2?
23 Exempel: Räkna ut acceptanssannolikheten Ett parti om 1000 enheter innehåller 240 defekta. Vad är acceptanssannolikheten om provgruppsstorleken är 10 och avvisningstalet är 2? Lösning: Räkna ut acceptanssannolikheten N = 1000, n = 10, r = 2, p = = 0.24 Binomial approximationen kan användas ty n N L(p = 0.24) = P(ξ < r) = ξ Bin(N = 10, p = 0.24) = 0.01 < ( ) 10 (0.24) i (0.76) 10 i i i=0 = , 7%
24 Antag att partiet borde ha avvisats om 20% eller mer av enheterna var defekta. Vi räknade ut att med föreslagen enkel provtagningsplan så skulle det vara 26.7% risk att vi accepterade partiet även om antalet defekta enheter var 24%. Figur: OC-kurvan för föregående exempel med olika stora provgrupper.
25 För att minska risken att acceptera när så inte borde så kan man förutom att öka n även minska r. Detta leder dock till att man kommer avvisa er gånger när man inte borde. (a) OC-kurvan för föregående exempel fast olika stora provgrupper. (b) OC-kurvan för föregående exempel fast olika stora avvisningstal.
26 Denition: Typer av fel Typ I fel: Avvisar ett bra parti. (Dyrt för producenten) Typ II fel: Accepterar ett dåligt parti. (Dåligt för konsumenten) Denition: Kvalitetsgränser p 1 = Acceptabel kvalitetsnivå, AQL: Största felkvoten som kan anses vara tillfredsställande som processgenomsnitt p 2 = gränskvalitet, LTPD: Det sämsta värdet på kvalitetsnivån som konsumenten är villig att acceptera α = producentrisk: Risken att göra ett typ I fel vid p 1. β = konsumentrisk: Risken att göra ett typ II fel vid p 2.
27 Figur: OC-kurvan med producentrisk och konsumentrisk.
28 Vi bestämmer p 1 och p 2 samt de risker vi är beredda att ta vid dessa gränser (producentrisken och konsumentrisken). Alltså, L(p 1 ) = 1 α, L(p 2 ) = β Den enkla provtagningsplanen har två parametrar (n, c). Två ekvationer och två okända parametrar! Nu behöver man bara lösa ut bästa n och c värden från dessa krav. Om vi kan approximera den hypergeometriska fördelningen med en binomialfördelning så kan ett binomialfördelningsnomogram hjälpa oss här.
29 Problem: 1.5 a) (SK) Ett företag har bestämt att ett bra parti innehåller högst 4% defekta enheter. Ett sådant parti skall accepteras med sannolikheten 95%. Ett dåligt parti innehåller minst 15% defekta enheter. Acceptanssannolikheten för ett sådant parti får bara vara 10%. a) Vilken enkel provtagningsplan bör detta företag använda så att dessa villkor blir uppfyllda?
30 Problem: 1.5 a) (SK) Ett företag har bestämt att ett bra parti innehåller högst 4% defekta enheter. Ett sådant parti skall accepteras med sannolikheten 95%. Ett dåligt parti innehåller minst 15% defekta enheter. Acceptanssannolikheten för ett sådant parti får bara vara 10%. a) Vilken enkel provtagningsplan bör detta företag använda så att dessa villkor blir uppfyllda? Lösning: 1.5 a) (SK) p 1 = 4%, L(p 1 ) = 95% = 1 α α = 5% p 2 = 15%, L(p 2 ) = 10% = β Antag N >> n eftersom det inte står något om storleken på N. Därför kan vi approximera med en binomialfördelning för utfallet av antal defekta i provgruppen, ξ Bin(n, p).
31
32
33
34
35 Lösning: 1.5 a) (SK) Från binomialmonogrammet såg vi: n 60, c 5 Problem: 1.5 b) (SK) Kontrollera att allting stämmer genom att räkna ut L(p 1 ) och L(p 2 ).
36 Lösning: 1.5 a) (SK) Från binomialmonogrammet såg vi: n 60, c 5 Problem: 1.5 b) (SK) Kontrollera att allting stämmer genom att räkna ut L(p 1 ) och L(p 2 ). Lösning: 1.5 b) (SK) L(4%) = 5 ( ) 60 (0.04) i (0.96) 60 i = 96.8% i i=0 L(15%) = 9.68%
37 Sammanfattning Kvalitet Uppfyllandet av krav Acceptanskontroll Gör ett urval som är mindre än alla enheter i partiet. Dra slutsats om partiets kvalitet från detta urval. Enkel provtagningsplan En plan för hur man skall dra slutsatsen om partiets kvalitet givet en mindre urvalsgrupp. Design av enkel provtagningsplan med binomialnomogram: Dra linjer i ett binomialmonogram för att avgöra optimala n- och c-värden i den enkla provtagningsplanen. Fungerar bara om n < N eftersom den är baserad på 10 binomialapproximationen.
LMA521: Statistisk kvalitetsstyrning
Föreläsning 1 Dagens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från boken.
LMA521: Statistisk kvalitetsstyrning
Föreläsning 3 Föregående föreläsning Dubbel provtagningsplan Tabeller för Dubbel provtagningsplan Dagens innehåll 1 Genomsnittsligt provuttag 2 Genomgång av problem 116 från boken 3 Genomsnittslig kontrollomfattning
LMA521: Statistisk kvalitetsstyrning
Föreläsning 3 Föregående föreläsning Dubbel provtagningsplan Tabeller för Dubbel provtagningsplan Dagens innehåll 1 Genomsnittsligt provuttag 2 Genomgång av problem 116 från boken 3 Genomsnittslig kontrollomfattning
LMA521: Statistisk kvalitetsstyrning
Föreläsning 4 Föregående föreläsning Genomsnittsligt provuttag Genomsnittslig kontrollomfattning Genomsnittslig utgående kvalitet Dagens innehåll Övningar 1 Problem SK 122 2 Problem 8 Tenta 160113 Problem:
LMA521: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
LMA522: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
LMA522: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen
Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll
LMA521: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Tillämpad matematisk statistik LMA521 Tentamen
Tillämpad matematisk statistik LMA521 Tentamen 20190115 Tid: 8.30-12.30 Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen Tabell- och formelsamling i matematisk statistik, försöksplanering
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
LMA521: Statistisk kvalitetsstyrning
Föreläsning: Kapabilitet Föregående material Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
LMA521: Statistisk kvalitetsstyrning
Föreläsning 7 Föregående föreläsningar Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram Dagens
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
SF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011
Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi
Kapitel 5 Multivariata sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara
Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA Matematisk statistik, Tentamen består av åtta uppgifter motsvarande totalt poäng. Det krävs minst poäng för betyg, minst poäng för 4 och minst 4 poäng för. Examinator: Ulla Blomqvist, ankn
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Tentamen i matematisk statistik (92MA31, STN2) kl 08 12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
LMA201/LMA521: Faktorförsök
Föreläsning 1 Innehåll Försöksplanering Faktorförsök med två nivåer Skattning av eekterna. Diagram för huvudeekter Diagram för samspelseekter Paretodiagram Den här veckan kommer tillägnas faktorförsök.
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Lärare 4. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
1 Lärare 4 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Mer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del I
MS-A Grundkurs i sannolikhetskalkyl och statistik Exempel, del I G Gripenberg Aalto-universitetet januari G Gripenberg (Aalto-universitetet) MS-A Grundkurs i sannolikhetskalkyl och statistikexempel, del
Centrala gränsvärdessatsen (CGS). Approximationer
TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.
Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms
Diskreta slumpvariabler
1/20 Diskreta slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/1 2013 2/20 Dagens föreläsning En maskin gör fel ibland! En man berättar att han har minst en
Föreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys).
Tentamen i Matematisk statistik Ämneskod-linje S000M Poäng totalt för del 25 (8 uppgifter) Poäng totalt för del 2 0 ( uppgifter) Tentamensdatum 200-0-5 Ove Edlund Lärare: Adam Jonsson Robert Lundqvist
χ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier:
Stat. teori gk, ht 006, JW F1 χ -TEST (NCT 16.1-16.) Ordlista till NCT Goodness-of-fit-test χ, chi-square Test av anpassning χ, chi-två Test av anpassning: sannolikheter specificerade i förväg Data: n
Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)
Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) Formellsamling och teori Nästa varje ekva.on som vi använder under kursen finns I samlingen. Tricket i examen är hica räc metod/fördelning.ll
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Diskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
TENTAMEN. Matematik och matematisk statistik 6H3000/6L3000
Namn: ersonnummer: Klass: Kurs: Kursnummer: Moment: rogram: Åk: Examinator: Rättande lärare: Datum: Tid: Hjälpmedel: Omfattning och betygsgränser: TENTMEN Matematik och matematisk statistik H/L TEN DD/DE/D/MT
Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen
Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Exempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
Lärare 1. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 1 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-06-02 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mikael Stenlund Examinator:
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen
Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen 2019-03-18 Tid: 8.30-12.30. Tentamensplats: Lindholmen Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen
Oberoende stokastiska variabler
Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen
Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
1 Föreläsning IV; Stokastisk variabel
1 FÖRELÄSNING IV; STOKASTISK VARIABEL 1 Föreläsning IV; Stoastis variabel Vi har tidigare srivit P (1, 2, 3, 4, 5) = P (C) för sannoliheten för att få 1, 2, 3, 4 eller 5 vid ett tärningsast. Vi sall använda
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
TAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33
Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
Målet för D2 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 2 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
TENTAMEN I MATEMATISK STATISTIK 19 nov 07
TENTAMEN I MATEMATISK STATISTIK 9 nov 7 Ten i kursen HF ( Tidigare kn 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Ten i kursen 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: 3:5-7:5 Lärare: Armin Halilovic
Studietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2015-08-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Syfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen
Uwe Menzel, 2017 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Syfte: o statistiska test om parametrar för en fördelning o förkasta eller acceptera hypotesen hypotes: = 20 (väntevärdet är 20)
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Tentamen i Statistik, STA A13 (4 poäng) Lördag 11 november 2006, Kl
Tentamen i Statistik, STA A13 ( poäng) Lördag 11 november 00, Kl 09.00-13.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Föreläsningsanteckningar till kapitel 8, del 2
Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.
Lösningsförslag till Matematisk statistik LKT325 Tentamen
Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper
Föreläsning 4, Matematisk statistik för M
Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling
1. Du slår en tärning två gånger. Låt A vara händelsen att det första kastet blir en sexa och låt B vara händelsen att summan av kasten blir sju.
Projekt MVE49 Del 1 Det är tillåtet att sammarbeta, men alla lösningar skall lämnas in individuellt. Sista inlämningsdag är 4de oktober på föreläsningen. Det är ok att lämna in elektroniskt genom att maila
Övningstentamen 1. c) Beräkna sannolikheten att exakt en av A eller B inträffar (6 poäng)
Övningstentamen Uppgift : Vid ett experiment kan en händelse A, en händelse B eller både A och B inträffa. I en serie om 00 försök har man sammanställt följande statistik: i 90 fall har minst en av A eller