LMA201/LMA521: Faktorförsök
|
|
- Stig Öberg
- för 6 år sedan
- Visningar:
Transkript
1 Föreläsning 1
2 Innehåll Försöksplanering Faktorförsök med två nivåer Skattning av eekterna. Diagram för huvudeekter Diagram för samspelseekter Paretodiagram
3 Den här veckan kommer tillägnas faktorförsök. En annan bok: Försöksplanering - Faktorförsök av Ulla Dahlbom. Den lilla lila boken.
4 Statistik kan användas för att undersöka hur olika faktorer (x) påverkar någon given storhet (y ). Om faktorerna är det enda som påverkar y och man kan mäta dessa exakt så är det inte någon slump inblandad. Problemet är då enbart av matematisk natur och statistik behövs inte. I verkligheten är dock detta antagande sällan sant. Mätningar är inexakta och det nns oftast ytterligare faktorer som man inte känner till eller kan mäta. Utan kontroll över mätfelen och de gömda faktorerna så beter sig den uppmätta storheten slumpmässigt.
5 Eftersom slump är inblandat så modelleras storheten som en slumpvariabel (Y ). Man kan då observera slumpvariabel betingat på olika värden hos de kända faktorerna, (Y x). Om man bara har diskreta värden hos faktorerna (nivåer) så kan man dela upp observerad data i grupper. En grupp för varje unik uppsättning av nivåer hos faktorerna. Exempel Y (0, ): Tiden det tar för :ans spårvagn att åka sin rutt. x 1 : Tiden på dagen ({ 'morgon', 'dag', 'kväll' }) x : Väderlek ({ 'sol', 'regn' }) Antal grupper: 3 = 6.
6 I exemplet med spårvagnen så kan man fråga sig om sannolikhetsfördelningen för dessa 6 olika grupper är olika och i så fall på vilket sätt? Ofta nöjer man sig med att ta reda på om väntevärdena är olika och vilken grupp som ger det bästa eller värsta värdet (den kortaste eller längsta tiden i exemplet med spårvagnen). Exempel Är E [Y x 1 = morgon, x = sol] < E [Y x 1 = dag, x = regn]?
7 Planerade försök För att få tillgång till observationer av storheten man är intresserad av så kan man göra på två sätt. Planerat försök: Man kontrollerar själv nivåerna på faktorerna för varje mätning av storheten. Observationsstudie: Man observerar storheten och antecknar vilka nivåer faktorerna hade under observationen. Kan man välja så är data från ett planerat försök att föredra eftersom man kan balansera antalet observationer i varje grupp samt hindra att någon okänd faktor, som också påverkar Y, systematiskt stör slutsatsen. Nackdelen är att ett planerat försök kräver möjlighet att kontrollera nivåerna samt oftast innebär en större arbetsinsats/kostnad.
8 Faktorförsök Den här veckan kommer vi lära oss planera faktorförsök med två nivåer. D.v.s. hur vi skall utföra ett planerat försök då faktorerna bara kan anta två möjliga nivåer. Då vi endast tänker oss två nivåer per faktor så kan man koda dessa som 'låg nivå'( 1) och 'hög nivå' (+1). Man tänker sig sedan att väntevärdet, µ x, för Y x kan modelleras som funktion av faktornivåerna med parametrar β = [β a, β b, β ab, β c,...]. Exempel: Två faktorer E[Y x] = µ x = β 0 + β a x a + β b x b + β ab x a x b
9 Termen β a motsvarar hur Y påverkas då faktor A byter nivå om man medelvärdesbildar mellan båda nivåerna på faktor B. Alltså om man tittar på slumpvariabeln Y (x a,x b = 1)+Y (x a,x b =+1). På samma sätt så är β b påverkan av faktor B om man medelvärdesbildar bort faktor A. Termen β ab är en samspelseekt. β ab förklarar hur de två faktorerna tillsammans förstärker eller motverkar den påverkan som redan givits av β a - och β b -eekterna.
10 Det kan kanske vara lättare att förstå vad β-termerna egentligen symboliserar ifall man beskriver dem på omvänt sätt istället. Låt µ (k,l) = µ (x a = k, x b = l). β 0 = µ ( 1, 1) + µ (+1, 1) + µ ( 1,+1) + µ (+1,+1) β a = µ (+1, 1) + µ (+1,+1) β b = µ ( 1,+1) + µ (+1,+1) β ab = µ (+1,+1) + µ ( 1, 1) µ ( 1, 1) + µ ( 1,+1) µ ( 1, 1) + µ (+1, 1) µ ( 1,+1) + µ (+1, 1)
11 Målet med ett planerat försök är ofta att upptäcka bästa eller värsta kombinationen av faktorer för ett önskat resultat. Det kan t.ex. vara hur man skall ställa in produktionsprocessen i en fabrik, hur man skall äta och träna för att göra ett bra resultat i en tävling eller vad som är de mest optimala parametrarna i ett inbyggt elektriskt system. Om β a > 0 så innebär det t.ex. att om man låter faktor A vara hög så kommer väntevärdet av Y i genomsnitt vara större än om faktor A är låg. På samma sätt för faktor B. Det kan dock vara så att sampselseekten gör det mer eektivt att låta faktor B vara låg om det är så att samspelseekten är negativ och β a + β b + β ab < β a β b β ab.
12 Mer än två faktorer? Fungerar på exakt samma sätt. Man behöver nu en parameter för varje faktor (K st om vi antar K faktorer) samt en parameter för varje samspel. Samspel kan vara allt från två-faktorsamspel till ( K K ) K-faktorsamspel. Alltså nns det k= k möjliga samspel. µ x =β 0 + β a x a + β b x b + β c x c β ab x a x b + β ac x a x c + β bc x b x c β abc x a x b x c + β bcd x b x c x d +...
13 När man utför de planerade försöken kommer man nu få ett antal olika mätningar. Antag att vi gör minst en mätning för varje grupp av samlade nivåer. Vi har då redan kunskapen för att göra punktskattningar av β-parametrarna eftersom vi vet hur man gör punktskattningar av väntevärden. T.ex. eftersom E [Y (+1, +1)] + E [Y (+1, 1)] β a = E [Y ( 1, +1)] + E [Y ( 1, 1)] så är vår punktskattning av β a givet datan (låt oss kalla den l a ) l a =l a + l a = ˆµ (+1,+1) + ˆµ (+1, 1) ˆµ ( 1,+1) + ˆµ ( 1, 1), där ˆµ (+1,+1) = 1 n (+1,+1) n(+1,+1) i=1 y i,(+1,+1), n (+1,+1) är antalet mätningar i grupp (+1, +1) och y i,(+1,+1) är den i:te mätningen i grupp (+1, +1).
14 På samma sätt så kan vi punktskatta alla andra β-parametrar. Försök nr A B AB Resultat ȳ 1 = ȳ = ȳ 3 = ȳ = Se på tabellen vilka y - värden som skall vara positiva och negativa för respektive eekt.
15 På samma sätt så kan vi punktskatta alla andra β-parametrar. Försök nr A B AB Resultat ȳ 1 = ȳ = ȳ 3 = ȳ = Se på tabellen vilka y - värden som skall vara positiva och negativa för respektive eekt. l 0 = l a = + l b = 3 + l ab = = 3.5 = = 0.5 = = +0.5 =.5 = +1.5
16 Som ni ser så kommer skattningar av eekterna att bero på era av mätvärdena ȳ i. Detta stabiliserar skattningen (precis som när vi räknar ut ett stickprovsmedelvärde) fastän om man kanske bara gjort en mätning för varje grupp. Detta skulle ju inte varit fallet om man skattade µ ( 1, 1) direkt som ȳ 1.
17 Försök nr A B AB Resultat ȳ 1 = ȳ = ȳ 3 = ȳ = ȳ 1 är här stickprovsmedelvärdet av alla mätningar gjorda med uppsätningen av faktornivåer (-1, -1) osv. Om det är mer än en mätning för varje uppsättning faktornivåer, kom ihåg att välja ut när mätningarna sker i experimentet slumpmässigt. Alltså, gör inte alla mätningar för (-1,-1) efter varandra utan slumpa ut ordningen. Detta minskar risken att något systematiskt fel av misstag inkluderas i analysen.
18 Diagram för huvudeekter y Man kan rita ut huvudeekterna i ett diagram för att lättare få känsla för vad eekterna är när faktorn är låg resp. hög. För faktor A ritar man då ut l a - och l a +-värdena på y-axeln och motsvarande 1 och +1 på x-axeln. Man fortsätter därefter med faktor B, C, etc på samma sätt l l+ l x l+ l ( 1) X_a (+1) ( 1) X_b (+1) ( 1) X_c (+1) l+ I den här guren ser man att faktor A:s huvudeffekt har störst påverkan eftersom det är störst skillnad mellan l + och l för faktor A. Dessutom ser vi att det är en positiv påverkan då l + > l. (B och C:s huvudeekter påverkar negativt.)
19 Diagram för samspelseekter Man kan även rita ut diagram för samspelseekterna. Är man t.ex. intresserad av samspelseekten β ab så kan man rita ett streck mellan medelvärdet inom grupperna där faktor B är låg respektive hög då faktor A är låg respektive hög A+ A A A+ I den här guren ser man att det existerar ett samspel eftersom linjerna inte är parallella mot varandra. µ x = β 0 + β a x a + β b x b + β ab x a x b ( 1) X_b (+1)
20 Paretodiagram För att tydligt kunna se storleken på de uppskattade eekterna så kan man rita upp ett Paretodiagram Rangordna eekterna i storleksordning utan hänsyn till tecken. Rita in staplarna (störst till vänster och sedan i avtagande ordning). AxB A B Figur: Paretodiagram över de uppskattade eekterna från exemplet ovan.
21 Paretodiagram I boken ritar de dem liggande. AxB 1.5 A 0.5 B Figur: Paretodiagram över de uppskattade eekterna från exemplet ovan.
22 Sammanfattning Vi vill utföra planerade faktorförsök för att ta reda på hur en viss storhet påverkas av förändringar i bakomliggande faktorer. Vi bryr oss nu bara om hur väntevärdet förändras då faktorerna skiftas mellan höga och låga nivåer. Om vi har K olika faktorer så kommer vi behöva göra minst K olika mätningar för att uppskatta alla eekter i vår modell. Vid mer än en mätning för varje nivåuppsättning så välj ut ordningen på mätföljden slumpmässigt. Då undviker man att få med eventuella systematiska fel. Visualisera de skattade eekterna med diagram.
23 Exempel Försök nr A B C AB BC AC ABC Resultat y1 = [3.7,.8] y = [.8,.8] y3 = [18.7, 17.1] y = [13.5, 1.1] y5 = [10.1, 11.7] y6 = [8.8, 9.3] y7 = [17.7, 16.9] y8 = [0., 0.]
24 Försök nr A B C AB BC AC ABC Resultat ȳ1 = ȳ = ȳ3 = ȳ = ȳ5 = ȳ6 = ȳ7 = ȳ8 = 0.10 l 0 = = 9.6 l a = = 5.
25 Försök nr A B C AB BC AC ABC Resultat ȳ1 = ȳ = ȳ3 = ȳ = ȳ5 = ȳ6 = ȳ7 = ȳ8 = 0.10 l b = = 5.8 l c = = 0.60
26 Försök nr A B C AB BC AC ABC Resultat ȳ1 = ȳ = ȳ3 = ȳ = ȳ5 = ȳ6 = ȳ7 = ȳ8 = 0.10 l ab = = 5.5 l bc = = 6.55
27 Försök nr A B C AB BC AC ABC Resultat ȳ1 = ȳ = ȳ3 = ȳ = ȳ5 = ȳ6 = ȳ7 = ȳ8 = 0.10 l ac = =.13 l abc = =.3
28 BxC A B AxB AxC AxBxC C Figur: Paretodiagram.
29 l l+ l l+ l l+ ( 1) X_a (+1) ( 1) X_b (+1) ( 1) X_c (+1) Figur: Diagram för huvudeekter.
30 B C+ B C B+C B+C+ B+C : medelvärdet av alla ȳ i där faktor B är hög och faktor C är låg. Samspelseekten är tydlig då linjerna inte är parallella. Att vinkeln är stor mellan linjerna visar att samspelseekten är stor. ( 1) X_b (+1) (a) Samspelsgraf för BxC.
LKT325/LMA521: Faktorförsök
Föreläsning 2 Innehåll Referensfördelning Referensintervall Skatta variansen 1 Flera mätningar i varje grupp. 2 Antag att vissa eekter inte existerar 3 Normalfördelningspapper Referensfördelning Hittills
LMA201/LMA521: Faktorförsök
Föreläsning 3 Innehåll Reducerade försöksplaner Generatorer Denierande relationer Ord Upplösning Reducerade försöksplaner Varje mätning kommer med en kostnad. I många fall är den kostnaden så dyr att man
LKT325/LMA521: Faktorförsök
Föreläsning 3 Innehåll Reducerade försöksplaner Generatorer Denierande relationer Ord Upplösning Reducerade försöksplaner Varje mätning kommer med en kostnad. I många fall är den kostnaden så dyr att man
Föreläsning 15: Faktorförsök
Föreläsning 15: Faktorförsök Matematisk statistik Chalmers University of Technology Oktober 17, 2016 Ensidig variansanalys Vi vill studera om en faktor A påverkar en responsvariabel. Vi gör totalt N =
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen
Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll
LKT325/LMA521: Faktorförsök
Föreläsning 4 Innehåll Genomgång: Helikopterlabben Exempel: Reducerat faktorförsök Helikopterlabben Ni tar rollen av att vara konsulter åt ett företag som tillverkar pappershelikoptrar. Företaget har identierat
LMA521: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
LMA201/LMA522: Faktorförsök
Föreläsning 5 Innehåll Uppgift 6 på tenta 20190115 Exempel: Normalfördelningsdiagram Uppgift 6 på tenta 20180313 Uppgift 6, tenta 20190115 Familjen Yrsel åkte på gemensam cykelsemester förra sommaren.
LMA522: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Lösningsförslag till Matematisk statistik LKT325 Tentamen
Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs
Diskussionsproblem för Statistik för ingenjörer
Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka
Matematisk statistik LKT325 Tentamen med lösningar
Matematisk statistik LKT325 Tentamen 2018-04-06 med lösningar Tid: 8.30-12.30. Tentamensplats: Lindholmen Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen Tabell- och formelsamling
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 2 & 9 oktober 217 Johan Lindström - johanl@maths.lth.se FMSF7/MSB2 F11 1/32 Repetition Multipel linjär regression
LMA201/LMA521: Faktorförsök
Föreläsning 4 Innehåll Genomgång: Helikopterlabben Exempel: Reducerat faktorförsök Helikopterlabben Ni tar rollen av att vara konsulter åt ett företag som tillverkar pappershelikoptrar. Företaget har identierat
Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.
UPPSALA UNIVERSITET Matematiska institutionen Erik Broman, Jesper Rydén TENTAMEN I MATEMATISK STATISTIK Sannolikhet och statistik 1MS5 214-1-11 Skrivtid: 8.-13.. För betygen 3, 4 resp. 5 krävs 18, 25 resp.
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL
TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-
F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 5Hp 41I12B KINAF13, KINAR13, KINLO13,KMASK13 7,5 högskolepoäng Tentamensdatum: 30 oktober
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 005 Uppgift 1: Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens
Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
FÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ
Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll
Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen
Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen 2019-03-18 Tid: 8.30-12.30. Tentamensplats: Lindholmen Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen
Tillämpad matematisk statistik LMA521 Tentamen
Tillämpad matematisk statistik LMA521 Tentamen 20190115 Tid: 8.30-12.30 Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen Tabell- och formelsamling i matematisk statistik, försöksplanering
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Några extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
Föreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
10. Konfidensintervall vid två oberoende stickprov
TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Matematisk statistik kompletterande projekt, FMSF25 Övning om regression
Lunds tekniska högskola, Matematikcentrum, Matematisk statistik Matematisk statistik kompletterande projekt, FMSF Övning om regression Denna övningslapp behandlar regression och är tänkt som förberedelse
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
LMA521: Statistisk kvalitetsstyrning
Föreläsning 1 Dagens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från boken.
Mer om konfidensintervall + repetition
1/14 Mer om konfidensintervall + repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/2 2011 2/14 Dagens föreläsning Skattningar som slumpvariabler Väntevärde Varians
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden
LMA522: Statistisk kvalitetsstyrning
Föreläsning 1 Föreläsningens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se
Föreläsning 12, FMSF45 Hypotesprövning
Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Föreläsning 4. Kapitel 5, sid Stickprovsteori
Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
F9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
Mer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
Tentamen för kursen. Linjära statistiska modeller. 13 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 13 januari 2011 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 32, hus
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Laboration 2: Styrkefunktion samt Regression
Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar).
Tekniska högskolan i Linköping Matematiska institutionen Matematisk statistik,jan Olheim MATEMATIK:Statistik 9MA31 STN, 9MA37 STN TENTAMEN MÅNDAGEN DEN OKTOBER 01 KL 14.00-18.00. Hjälpmedel:Formler och
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Johan Lindström Repetition Johan Lindström - johanl@maths.lth.se FMS86/MASB2 1/44 Begrepp S.V. Fördelning Väntevärde Gauss CGS Grundläggande begrepp (Kap.
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri
Något om sannolikheter, slumpvariabler och slumpmässiga urval
LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns