LKT325/LMA521: Faktorförsök
|
|
- Kjell Gunnarsson
- för 6 år sedan
- Visningar:
Transkript
1 Föreläsning 4
2 Innehåll Genomgång: Helikopterlabben Exempel: Reducerat faktorförsök
3 Helikopterlabben Ni tar rollen av att vara konsulter åt ett företag som tillverkar pappershelikoptrar. Företaget har identierat 5 olika faktorer som de tror har påverkan på ygdugligheten. Företaget vill nu att ni skall undersöka hur dessa 5 faktorer påverkar tiden som helikoptern kan stanna i luften. Deras förhoppning är att ni skall kunna ge dem förslag på hur de skall ställa om sin produktion så att helikoptern i genomsnitt stannar längre i luften.
4 Helikopterlabben 5 faktorer är som sagt givna i uppgiften (tejpade, bredd, längd, vinglängd, gemtyngd). Ni får byta ut faktorer mot egna faktorer om ni har några egna idéer av vad som skulle kunna påverka ygförmågan. En provplan för ett reducerat faktorförsök är given i uppgiften (2 5 1 ). Använd er av den. Instruktioner på hur ni skapar helikoptrarna är inkluderade i uppgiftens pdf-l. Ni får bara utföra 16 mätningar och därför kan inte variansen skattas med metod I från föreläsningarna. Istället måste ni använda er av ett normalfördelningspapper (nns inkluderat i uppgiftens pdf) för att undersöka vilka eekter som verkar vara signikanta.
5 Helikopterlabben Den reducerade försöksplanen är som sagt redan bestämd. Studera den och hitta generatorer, denierande relationer och sammanblandningsmönster för huvudeekterna. När ni gör mätningarna, tänk på vad som kan vara källor till systematiska fel. Beskriv dessa samt hur ni gör för att försöka undvika dessa felen.
6 Labbrapport Resultatet av er undersökning skall bli en labbrapport. Skriv rapporten så att man kan förstå den utan att ha läst uppgiften. Beskriv utförandet, analysen och resultaten. Rapporten skall inkludera den reducerade försöksplanen med ifyllda uppmätta värden. Rapporten skall inkludera det ifyllda normalfördelningspappret. Rapporten skall skickas in via ping-pong i pdf-format. Detta innebär att om ni fyllt i försöksplanen och normalfördelningspappret för hand så får ni skanna in dem till er digitala rapport. Oavsett vilket program ni väljer att skriva rapporten i så nns det alltid någon möjlighet att spara den som pdf.
7 Inlämning Gå med i någon av de grupperna som nns på kursens ping-pong-sida. Det går max att vara 4 personer i varje grupp. Rapporten skall laddas upp via gruppens ping-pong senast 22:a December Inlämning består i en bifogad pdf-l. Pdf-lerna kommer läsas och jämföras både av ett automatiskt program och av rättaren. Kom därför ihåg att inga grupper får skriva av varandra eller använda sig av gemensamma mätningar då detta räknas som fusk. Lycka till!
8 Exempel: Reducerat faktorförsök Vi vill se hur tiden det tar att simma mellan Lindholmen och Slottsberget påverkas av följande faktorer 1 A: Simmar bröstsim (-), Crawlar (+). 2 B: Man målar små djupblå skfjäll med vattenfast tuchpenna över hela kroppen (+), eller man låter bli (-). 3 C: Simma med bara fötter (-), Ha på sig en simfena på högra foten (+). Då vattnet så här års kan vara lite... friskt, så kommer vi inte kunna göra mer än 4 försök innan vi måste ge upp och gå in och värma oss. Konstruera en bra försöksplan för att ta reda på hur man minimerar simtiden.
9 Uppenbarligen måste vi välja en reducerad försöksplan (2 3 1 ). Grupp nr A B AB Vi har starka skäl att tro att skfjällsidén inte kommer ha någon egentlig eekt. Därför är det nog bra om B har ett alias som vi faktiskt tror har en eekt. Både faktor A, C och AC kan förmodlingen ha en reell eekt. Därför vill vi inte att dessa skall sammanblandas med varandra.
10 Grupp nr A B AB Låt oss därför sätta generatorn
11 Grupp nr A B AB Låt oss därför sätta generatorn B = C. Detta ger den denierande relationen:
12 Grupp nr A B AB Låt oss därför sätta generatorn B = C. Detta ger den denierande relationen: M = BC. Sammanblandningsmönstret blir då:
13 Grupp nr A B AB Låt oss därför sätta generatorn B = C. Detta ger den denierande relationen: M = BC. Sammanblandningsmönstret blir då: M A B AB BC ABC C AC Detta är ett bra sammanblandningdmönster då alla eekter som inkluderar B bör vara fullständigt verkningslösa. Vi ser att vi har en plan då ordet BC har två bokstäver. II
14 Hade vi istället valt den kanske lite vanligare generatorn C = AB så hade vi fått sammanblandningsmönstret: M A B C ABC BC AC AB Detta hade gett en plan istället. Eftersom ingen eekt som III innehåller B tros existera så blir det även här ingen sammanblandning. Alltså, i det här speciella fallet så är dessa två planer lika bra trots att de har olika upplösning.
15 Det skall dock poängteras att om vi valt generatorn C = A så beblandar sig uppenbarligen eekter för C och A vilket leder till en dålig provtagningsplan även om B är totalt verkningslös. M A B BC AC C ABC AB Man kan alltså inte välja generatorn helt godtyckligt även om en av faktorerna är verkningslös.
16 Tillbaka till valet av generator C = B: Efter mätningar så har man fått följande tabell: Grupp nr A B AB C AC Resultat
17 Tillbaka till valet av generator C = B: Efter mätningar så har man fått följande tabell: Grupp nr A B AB C AC Resultat M + l BC = l A + l ABC = = 9.61 = 3.05 l B + l C = = 0.78 l AB + l AC = = 3.83
18 Om vi tror att faktor B inte påverkar någonting så har vi nu skattat att huvudeekten av att lära sig crawla är 3.05 minuter. Det är alltså generellt bättre att crawla. Huvudeekten för att lägga till en simfena enbart på högra foten är Det ser alltså fördelaktigt ut att använda en simfena. Samspelseekten av att crawla och ha en simfena är Det verkar alltså bäst att både crawla och ha en simfena.
19 Barfota bröstsim ger exakt medelvärdet Crawla och inte ha en simfena ger sämre värde än medelvärdet. Allra värst är att simma bröstsim med en simfena. Vi vet dock inte helt säkert att de målade skfjällen inte har någon eekt! Om de gör det så har vi även inkluderat dessa eekter i vår slutsats. Om skfjällseekten är tillräckligt stor så kan vi få olika slutsatser beroende på hur vi väljer vår generator då olika eekter blandar sig med varandra.
20 Problem: Tenta uppgift 5 Fullständigt faktorförsök: Nr. A B C D ȳ a) Beräkna samspelseekten l AB.
21 Problem: Tenta uppgift 5 Fullständigt faktorförsök: Nr. A B C D AB ȳ i
22 l AB = = = 1.875
23 l AB = = = b) Beräkna ett 99% referensintervall om standardavvikelsen för respektive ȳ i är σ = 2. Avgör om eekten AB är signikant.
24 l AB = = = b) Beräkna ett 99% referensintervall om standardavvikelsen för respektive ȳ i är σ = 2. Avgör om eekten AB är signikant. Vi får referenintervallet ±Z 0.01/2 2σ Alltså är l AB inte signikant då <
25 c) Antag att man också är intresserad av faktorerna E, F och G. Man gör ett reducerat faktorförsök med 16 grupper där A, B, C och D är som ovan. Generatorerna är E = ABCD, F = ABC och G = BCD. Beräkna alla ord och bestäm upplösningen. Förklara även varför det är ett dåligt val av generatorer om man inte vill att E skall beblandas med något tvåfaktorsamspel.
26 c) Antag att man också är intresserad av faktorerna E, F och G. Man gör ett reducerat faktorförsök med 16 grupper där A, B, C och D är som ovan. Generatorerna är E = ABCD, F = ABC och G = BCD. Beräkna alla ord och bestäm upplösningen. Förklara även varför det är ett dåligt val av generatorer om man inte vill att E skall beblandas med något tvåfaktorsamspel. I 1 = ABCDE, I 4 = I 1 I 2 = DEF, I 2 = ABCF,I 3 = BCDG I 5 = I 1 I 3 = AEG,I 6 = I 2 I 3 = ADFG I 7 = I 1 I 2 I 3 = BCEFG Upplösning III eftersom I 4 bara har 3 bokstäver.
27 Ord I 4 och I 5 leder till att E sammanblandas med DF och AG vilket inte var bra! Vi kan undvika att E sammanblandas med tvåfaktorsamspel genom att välja generatorerna E = ABC, F = BCD och G = ACD. Då får vi orden: I 1 = ABCE, I 4 = I 1 I 2 = ADF, I 7 = I 1 I 2 I 3 = CFG I 2 = BCDF,I 3 = ACDG I 5 = I 1 I 3 = BDEG,I 6 = I 2 I 3 = ABFG Detta är också en plan. III
28 d) Antag att man gör ett fullständigt faktorförsök med 8 faktorer. Hur många 3-faktorsamspel nns det?
29 d) Antag att man gör ett fullständigt faktorförsök med 8 faktorer. Hur många 3-faktorsamspel nns det? ( ) 8 Det nns 56 olika 3-faktorsamspel. 3 = 8! 5!3! = = = 56
30 Skapa en IV -plan I c)-uppgiften skulle vi ha kunnat skapa en plan. IV Vi vet att I 7 = I 1 (I 2 I 3 ) = I 1 I 6, I 7 = I 2 (I 2 I 3 ) = I 2 I 5, I 7 = I 3 (I 2 I 3 ) = I 3 I 4. Alla bokstäver i I 7 måste existera i antingen en eller alla tre av orden I 1, I 2, I 3. Vi vet att I 1, I 2 och I 3 är skapade direkt från de tre generatorerna. Det betyder att de tillsatta faktorernas bokstäver bara får nnas en för varje ord (I 1, I 2, I 3 ). Alltså måste I 7 innehålla alla dessa tre bokstäver då de inte kan tas ut från I 7 pga att de nns i två av de tre orden. Då vi vill ha en IV -plan så behöver I 7 innehålla minst en till bokstav utöver de nödvändiga (E, F, G ). Låt oss välja den till D. Alltså I 7 = DEFG.
31 Bokstäverna i I 7 måste existera i antingen en eller alla tre av orden I 1, I 2, I 3 samtidigt som dessa ord måste vara minst 4 bokstäver långa. Vi ser också att I 4 = I 3 I 7, I 5 = I 2 I 7 och I 6 = I 1 I 7. Orden I 4, I 5 och I 6 måste också vara minst 4 bokstäver långa. Alltså måste orden I 1, I 2, I 3 var och en för sig ha två bokstäver som inte nns i I 7. Orden I 4, I 5 och I 6 måste dessutom ha bokstäver som tas ut av motsvarande ord I 3, I 2, I 1. Så att dessa extra bokstäver inte hamnar i I 7. Vi kan då välja att deniera de första orden som t.ex. I 1 = ABDE I 6 = ABFG, I 2 = ACDF I 5 = ACEG, I 3 = BCDG I 4 = BCEF.
32 Generatorerna får vid från de första tre orden tillsammans med kunskapen att E, F, och G måste vara ditlagda efteråt. Alltså E = ABD F = ACD G = BCD Nu har vi en plan med upplösning IV!! Orden är: I 1 = ABDE, I 2 = ACDF, I 3 = BCDG, I 4 = BCEF, I 5 = ACEG, I 6 = ABFG, I 7 = DEFG.
LMA201/LMA521: Faktorförsök
Föreläsning 4 Innehåll Genomgång: Helikopterlabben Exempel: Reducerat faktorförsök Helikopterlabben Ni tar rollen av att vara konsulter åt ett företag som tillverkar pappershelikoptrar. Företaget har identierat
LKT325/LMA521: Faktorförsök
Föreläsning 3 Innehåll Reducerade försöksplaner Generatorer Denierande relationer Ord Upplösning Reducerade försöksplaner Varje mätning kommer med en kostnad. I många fall är den kostnaden så dyr att man
LMA201/LMA521: Faktorförsök
Föreläsning 3 Innehåll Reducerade försöksplaner Generatorer Denierande relationer Ord Upplösning Reducerade försöksplaner Varje mätning kommer med en kostnad. I många fall är den kostnaden så dyr att man
LMA201/LMA522: Faktorförsök
Föreläsning 5 Innehåll Uppgift 6 på tenta 20190115 Exempel: Normalfördelningsdiagram Uppgift 6 på tenta 20180313 Uppgift 6, tenta 20190115 Familjen Yrsel åkte på gemensam cykelsemester förra sommaren.
Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen
Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll
Lösningsförslag till Matematisk statistik LKT325 Tentamen
Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs
LMA201/LMA521: Faktorförsök
Föreläsning 1 Innehåll Försöksplanering Faktorförsök med två nivåer Skattning av eekterna. Diagram för huvudeekter Diagram för samspelseekter Paretodiagram Den här veckan kommer tillägnas faktorförsök.
1 Reducerat faktorförsök rf f
1 REDUCERAT FAKTORFÖRSÖK RF F 1 Reducerat faktorförsök rf f Vi skall med tre faktorer och således 2 3 försök reducera till ett fullständigt 2 2 försök. 1.1 Tre faktorer Vi repeterar med ett tidigare fullständigt
LKT325/LMA521: Faktorförsök
Föreläsning 2 Innehåll Referensfördelning Referensintervall Skatta variansen 1 Flera mätningar i varje grupp. 2 Antag att vissa eekter inte existerar 3 Normalfördelningspapper Referensfördelning Hittills
Övningstentamen i matematisk statistik för kemi
Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 005 Uppgift 1: Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens
Matematisk statistik LKT325 Tentamen med lösningar
Matematisk statistik LKT325 Tentamen 2018-04-06 med lösningar Tid: 8.30-12.30. Tentamensplats: Lindholmen Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen Tabell- och formelsamling
Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen
Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen 2019-03-18 Tid: 8.30-12.30. Tentamensplats: Lindholmen Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen
Tillämpad matematisk statistik LMA521 Tentamen
Tillämpad matematisk statistik LMA521 Tentamen 20190115 Tid: 8.30-12.30 Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen Tabell- och formelsamling i matematisk statistik, försöksplanering
LMA522: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se
Uppföljning av diagnostiskt prov HT-2016
Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri
TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL
TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-
LMA521: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 5Hp 41I12B KINAF13, KINAR13, KINLO13,KMASK13 7,5 högskolepoäng Tentamensdatum: 30 oktober
Del A: Schema för ifyllande av svar nns på sista sidan
Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Följande två modeller har anpassats till data, där man dels använt originalresponsdata (Modell 1) och dels en transform av responsdata (Modell
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.
a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.
Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som
Funktionella beroenden - teori
Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att
Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00.
Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (hem: 08-716 80 34) e-post: olohed@math.kth.se Mottagningstid:
Föreläsning 15: Faktorförsök
Föreläsning 15: Faktorförsök Matematisk statistik Chalmers University of Technology Oktober 17, 2016 Ensidig variansanalys Vi vill studera om en faktor A påverkar en responsvariabel. Vi gör totalt N =
Tentamen för kursen. Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Sal 22, hus
Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck
KOMBINATORISK LOGIK Innehåll Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck Boolesk algebra Karnaugh-diagram Realisering av logiska funktioner
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
Högskoleverket NOG
Högskoleverket NOG 2005-10-29 1. Att hyra en cykel kostar 60 kr första dygnet och därefter betalar man en lägre avgift per dygn. Hur mycket kostar det att hyra en cykel en vecka? (1) De efterföljande dygnen
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 2 & 9 oktober 217 Johan Lindström - johanl@maths.lth.se FMSF7/MSB2 F11 1/32 Repetition Multipel linjär regression
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, ONSDAGEN DEN 17 MARS 2010 KL
TENTAMEN I SF2950 (F D 5B1550 TILLÄMPAD MATEMATISK STATISTIK, ONSDAGEN DEN 17 MARS 2010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se
Tentamen i Matematisk statistik Ämneskod-linje S0001M. Tentamensdatum Poäng totalt för del 2 30 (3 uppgifter) Skrivtid
Tentamen i Matematisk statistik Ämneskod-linje S000M Poäng totalt för del 25 (8 uppgifter) Poäng totalt för del 2 30 (3 uppgifter) Tentamensdatum 2009-06-02 Kerstin Vännman Lärare: Ove Edlund Hans Johansson
Laborationer till kursen Livförsäkringsmatematik I
Laborationer till kursen Livförsäkringsmatematik I OBS: Texten i laborationerna är till viss del formulerad för att passa med Excel. Valet av verktyg för att genomföra laborationerna är emellertid ingalunda
Programmering II (ID1019)
ID1019 Johan Montelius Instruktioner Betyg Programmering II (ID1019) 2019-03-08 Svaren skall lämnas på dessa sidor, använd det utrymme som nns under varje uppgift för att skriva ner ditt svar (inte på
Quine McCluskys algoritm
Quine McCluskys algoritm Tabellmetod för att systematiskt finna alla primimplikatorer ƒ(a,b,c,d) = m(4,5,6,8,9,0,3) + d(0,7,5) Moment : Finn alla primimplikatorer Steg: Fyll i alla mintermer i kolumn.
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010
Tentamen Tllämpad matematsk statstk för MI och EPI den december Uppgft : Ett företag som tllverkar batterer av en vss typ har tllverknng förlagd tll två olka fabrker. Fabrk A står för 7% av tllverknngen
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +
Examination: En skriftlig tentamen den 15 mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare.
Kursprogram till Linjär algebra II, SF1604, för D1, vt12. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (mobil: 0730 547 891) e-post: olohed@math.kth.se Övningar: grupp
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Tentamen för kursen. Linjära statistiska modeller. 13 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 13 januari 2011 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 32, hus
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare
Högskoleprovet Kvantitativ del
Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning
Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen akut och kronisk variation.
5. Kontrolldiagram Variation Tillverkade produkter uppvisar variation. Kvalitetsökning en minskning av dessa variationer. Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen
e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2
Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π
Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.
Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Tentamen i Matematisk statistik, S0001M, del 1,
Tentamen i Matematisk statistik, S000M, del, 008-06-03. Längs en väg in mot centrum av Luleå finns 3 trafikljus. Trafikljusen fungerar oberoende av varandra. En Luleåbo som ofta kör längs den vägen har
Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
Antal P(ξ = x)
Tentamen i Matematisk statistik, S0001M, del 1, 2008-03-31 1. I USA s primärval har den demokratiske presidentkandidaten Barack Obama lyckats samla in stora mängder pengar till sin kampanj, där antalet
Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14
STOCKHOLMS UNIVERSITET MT 5001 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 13 januari 2014 Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14 Examinator: Martin Sköld, tel.
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2010-11-13 kl. 14:00 18:00
BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska
Examination: En skriftlig tentamen den XX mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare.
Kursprogram till Linjär algebra II, SF1604, för D1, vt10. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (mobil: 0730 547 891) e-post: olohed@math.kth.se Övningar: grupp
Introduktion till statistik för statsvetare
och enkäter "Det finns inget så praktiskt som en bra teori" September 2011 och enkäter Inledning Inledning Om vi vill mäta en egenskap hos en population individer (individer kan vara personer, företag
Genvägen till det perfekta ljudet
Genvägen till det perfekta ljudet - Hemförsök i försöksplanering IEK 0, 005-0-8 LTU Magnus Blomberg Anders Drott Esbjörn Lilja Hannes Skirgård 1 Inledning Sedan århundraden tillbaka har trumman använts
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).
TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:
Lycka till!
Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och
Nordic Field Trial System Version:
Sida 1 av 13 Nordic Field Trial System Version: 1.0.0.25636 Försöksdokumentation L3-1040-2014-001. iokol Resultat från nationella försök skall bara användas under följande förutsättningar - läs här Lennart
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Algebra I, 1MA004. Lektionsplanering
UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
Matematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
Tentamen i EDAF oktober Skrivtid: Skriv bara på ena sidan av pappret tentorna kommer att scannas in, och endast framsidorna rättas.
Tentamen i EDAF60 29 oktober 2018 Skrivtid: 14-19 Skriv bara på ena sidan av pappret tentorna kommer att scannas in, och endast framsidorna rättas. Skriv inte med färgpenna enda tillåtna färg är svart/blått/blyerts.
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden
Hemuppgift 2 ARMA-modeller
Lunds Universitet Ekonomihögskolan Statistiska Institutionen STAB 13 VT11 Hemuppgift 2 ARMA-modeller 1 Inledning Denna hemuppgift är uppdelad i två delar. I den första ska ni med hjälp av olika simuleringar
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006.
Institutionen för Matematik, KTH, Olle Stormark. 5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006. Detta är en grundläggande kurs i differential - och integralkalkyl för funktioner av en variabel. Enligt
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola
Tentamen i matematisk statistik för MI/EPI/DI/MEI den 19 dec 2012
Tentamen i matematisk statistik för MI/EPI/DI/MEI den 19 dec 01 Uppgift 1: Ett företag tiverkar säkerhetsutrustningar ti biar. Tiverkningen är föragd ti fyra oika änder, A, B C och D. I and A finns 0%
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-06-02 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mikael Stenlund Examinator:
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
b) S Ø aa, A Ø aa» bb, B Ø aa» bc, C Ø ac» bc» 2. Låt L vara språket över 8a< som nedanstående NFA accepterar.
Salling, 070-6527523 TID : 9-14 HJÄLPMEDEL : Inga BETYGSGRÄNSER : G 18p, VG 28p SKRIV TYDLIGT OCH MOTIVERA NOGA! PROV I MATEMATIK AUTOMATEORI & FORMELLA SPRÅK DV1, 4 p 20 MARS 2002 1. Språket L över alfabetet
Summor av slumpvariabler
1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler
Vetenskapsteori. Skriv gärna i fritext dina synpunkter om momentet (styrkor/svagheter).
Vetenskapsteori respondenter: 24 : Svarsfrekvens: 25.00 % Mycket dålig 0 (0.0%) Dålig 0 (0.0%) Lite bristande 2 (.%) Övervägande bra 2 (.%) Bra 2 (.%) Mycket bra 0 (0.0%) Medelvärde Standardavvikelse Variationskoefficient
SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för
Högskoleprovet Kvantitativ del
Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång
Efternamn förnamn pnr årskurs
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Lösning till kontrollskrivning 4A, den 8 oktber 23, kl.-2. i SF6 Diskret matematik för CINTE och CMETE. Inga hjälpmedel tillåtna. Minst
10. Konfidensintervall vid två oberoende stickprov
TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,
Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).
BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav
Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur
UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna
Innehåll. 1 Repetitionsuppgifter 3
Innehåll 1 Repetitionsuppgifter 3 2 Övningsuppgifter 8 2.1 Enfaktorförsök och varianskomponentmodeller........... 8 2.2 Tvåfaktorförsök. Blockförsök..................... 16 2.3 Flerfaktorförsök. Romerska
Tentamen i K0001N Kvalitetsutveckling
Institutionen för industriell ekonomi och samhällsvetenskap Datum: 2018-08-28 Tid: 09.00-14.00 Hjälpmedel: Miniräknare Formelsamling K0001N Version 4.3 Jourhavande lärare Erik Lovén, tel 0920-49 24 02
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?