5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006.
|
|
- Stina Andersson
- för 6 år sedan
- Visningar:
Transkript
1 Institutionen för Matematik, KTH, Olle Stormark. 5B1147 Envariabelanalys, 5 poäng, för E1 ht Detta är en grundläggande kurs i differential - och integralkalkyl för funktioner av en variabel. Enligt STUDIEHANDBOKEN skall studenten efter genomgången kurs kunna följande: Förstå, tolka och använda differential- och integralkalkylens grundbegrepp: reella tal, elementära funktioner, gränsvärden, kontinuitet, derivator, integraler och serier. Behärska de elementära funktionerna, det vill säga polynom, rationella funktioner, exponentialfunktioner, potensfunktioner, logaritmer samt de trigonometriska funktionerna och deras inverser. Beräkna gränsvärden genom att använda standardgränsvärden, Taylorutveckling samt l Hospitals regel. Använda derivatan som ett verktyg för att förstå funktioner och deras grafer, finna lokala och globala extrempunkter, bestämma värdemängder, analysera olikheter, etcetera. Förstå och använda Taylors formel med feluppskattning för att approximera funktioner med hjälp av polynom. Lösa linjära differentialekvationer av andra ordningen med konstanta koefficienter. Redogöra för Riemannintegralens definition, några av dess tolkningar och tillämpningar. Beräkna vissa bestämda integraler med hjälp av primitiva funktioner, variabelsubstitutioner och partiella integrationer. 1
2 Avgöra om vissa generaliserade integraler och oändliga serier är konvergenta (dvs. har mening) eller är divergenta. Kurslitteratur: Persson-Böiers: ANALYS I EN VARIABEL, Studentlitteratur, samt ÖVNINGAR I ANALYS I EN VARIABEL, Lunds Tekniska Högskola. Dessa köper man på studentkårens bokhandel. Dessutom används stencilen Kompletterande kurslitteratur om serier, som man kan ladda ner från kurshemsidan. Kurshemsidan: Undervisningen ges i form av 25 föreläsningar och 12 övningar. Huvudsyftet med föreläsningarna är att förklara matematiken så väl att alla inser att den här kursen inte innehåller några märkvärdigheter. Eftersom det är så pass få övningar, så kommer föreläsningarna även att ägnas åt att lösa problem från övningshäftet. Ytterligare problemlösning ges på övningarna, där man alltså får testa hur mycket man egentligen har förstått. Examination: Kursen är uppdelad i fyra moduler. Var och en av dessa avslutas med en kontrollskrivning omfattande tre tal. Varje KS-tal ger maximalt 3 poäng, och för godkänt krävs sammanlagt minst 5 poäng. Den som fått godkänt på kontrollskrivning i (där alltså i = 1, 2, 3 eller 4) får automatiskt full poäng på tentamenstal nummer i. Tentamensskrivningen innehåller först 4 tal à 3 poäng svarande mot de fyra modulerna, och sedan 4 tal à 4 poäng vardera. Så tillsammans kan man få maximalt 28 poäng. Inga hjälpmedel är tillåtna vid tentan. Ordinarie tentan ges onsdagen den 20:e december. Senare ges också en omtentamen. Preliminära betygsgränser: poäng ger betyget 3, poäng ger betyget 4, och poäng ger betyget 5. Kompletteringstentamen: De som fått 13 poäng på tentamensskrivningen har möjighet att komplettera till godkänt betyg. OBS: Obligatorisk tentamensanmälan minst 14 dagar före tentan via MINA SIDOR. Kursansvarig och föreläsare: Olle Stormark, som har e-postadressen olles@math.kth.se; den vanliga adressen är rum 3653 i Klocktornet, Lindstedtsvägen 25, KTH, med telfonnumret
3 Övningsledare: Markus Landgren och Mattias Sandberg. Kurssekreterare: Ulla Gällstedt, Ulla svarar på frågor om registrering och rapportering. Preliminär kursplanering Läsanvisningarna nedan refererar till vår lärobok, Persson- Böiers, ANA- LYS I EN VARIABEL, samt till stencilen Kompletterande kurslitteratur om serier. Övningstalen är hämtade från exempelsamlingen Övningar i analys i en variabel; förhoppningen är att de flesta ska hinnas med i undervisningen övriga lämnas till hemarbete. Modul 1: Grundläggande begrepp. Föreläsning 1 Appendix B: matematiskt symbolspråk, 1.1: 1.2: funktioner, 1.3: absolutbelopp. Övningstal: 1.8, 1.10, 1.13, intervall, Föreläsning 2 1.4: polynom, 1.5: rationella funktioner, 1.6: potens- och exponentialfunktioner, 1.7: logaritmer. Övningstal: 1.17f, 1.20d,e,f, 1.22a,b,c, 1.27, Föreläsning 3 1.8: inverser och sammansättningar, 1.9: trigonometriska funktioner, 1.10: arcusfunktioner, 1.11: hyperboliska funktioner. Övningstal: 1.42, 1.43, 1.44a,e, 1.51, 1.55, 1.62, 1.74, 1.82, Övning 1 1.4a,b, 1.5, 1.11, 1.16a, 1.24a,c, 1.26, 1.31b, 1.37a,c, 1.46, Föreläsning 4 2.1: gränsvärden, 2.2: kontinuitet. Övningstal: 2.1a,b, 2.3d, 2.4c, 2.7a, 2.9, 2.17a, 2.20b. Föreläsning 5 2.3: talet e, 2.4: standardgränsvärden, 2.5.1: asymptoter. Övningstal: 2.10a,c, 2.13b, 2.24c,e, 2.27a,b. Övning , 1.56, 1.65, 1.77, 2.4a,b, 2.6a, 2.7d, 2.12, 2.22, 2.24c. Föreläsning : derivator. Övningstal: 3.1b, 3.4, 3.6a. Modul 2: Differentialkalkyl. 3
4 Förläsning 7 3.4: de elementära funktionernas derivator, 3.5: allmänna egenskaper. Övningstal: 3.7a,b,c, 3.9a,b,h, 3.11a, Övning 3 kontrollskrivning 1 första timmen; sedan 3.1c,d, 3.3, 3.6b, 3.7d,g. Föreläsning 8 3.6: högre derivator, 3.8: differentialer, 4.1: kurvritning. Övningstal: 3.22, 3.24, 3.31, 3.34, 4.4c,d. Föreläsning 9 4.2: extremvärden, 4.3: optimering, 4.4: olikheter. Övningstal: 4.6a,b, 4.7b,c, 4.12b,d, Övning c,d, 3.16, 3.25, 3.29a,b, 4.1b,e, 4.4b, 4.5b,d. Föreläsning : linjära differentialekvationer av andra ordningen, 8.6: den homogena ekvationen. Övningstal: 8.39a,c,d, Föreläsning : partikulärlösningar, 8.8: högre ordningar. Övningstal: 8.49c, 8.51c, 8.53, 8.56e, 8.57, 8.63b,c. Övning 5 4.9a,d, 4.12c, 4.30, 4.33, 8.40a,b, 8.41a,b, Modul 3: Integralkalkyl. Föreläsning : primitiva funktioner. Övningstal: 5.1f j, 5.3c,d, 5.7c,f, 5.10e, 5.13b, 5.14b,f,j, 5.16b. Föreläsning : partialbråksuppdelning (utom fallet då nämnaren har multipla komplexa nollställen). Övningstal: 5.17b, 5.18b, 5.21d, 5.22d, 5.25c. Övning 6 kontrollskrivning 2 första timmen; sedan 5.2f,h,j, 5.4d,e, 5.6f,g,k, 5.6e, 5.8e. Föreläsning : rotuttryck, 5.4: trigonometriska funktioner. Övningstal: 5.27c, 5.29a, 5.31c,d, 5.32c, 5.33f. Föreläsning : Riemannintegralen. Övningstal: 6.3, 6.4, 6.9,
5 Övning a,c,d, 5.23d, 5.25b, 5.27b, 5.28a,d, 5.32d, 5.33d, 6.2. Föreläsning integrationsregler. Övningstal: 6.12 c,d, 6.15b,d, 6.17c, 6.21a. Föreläsning : generaliserade integraler. Övningstal: 6.25a,b, 6.27a,c, 6.30c,d, 6.32a,b. Övning 8 6.6, 6.8, 6.12a, 6.14, 6.16c, 6.18d, 6.19b. Föreläsning : areor, 7.2: en tråds massa, 7.3: rotationsvolymer. Övningstal: 7.2, 7.8, 7.10, 7.11, 7.20, Föreläsning : kurvlängder (utom polär form), 7.5: rotationsytor. Övningstal: 7.24, 7.25, 7.26, 7.32, Övning c, 6.27b, 6.29b, 6.31b, 6.32c, 7.3, 7.12, Modul 4: Numeriska serier och Taylorserier. Föreläsning : serier, 7.9: integraler och summor. Övningstal: 2.28, 2.29c,d, 2.30d,f, 7.47, Föreläsning 21 Stencilen Kompletterande kurslitteratur om serier. Övningstal: 1b, 2b, 4a, 5a, 6a. Övning 10 kontrollskrivning 3 första timmen; sedan 2.29a,b, 2.30a,b,c,e, Föreläsning : Taylors formel, 9.3: standardutvecklingar, 9.4: entydighet. Övningstal: 9.2b,d, 9.6, 9.7, 9.8. Föreläsning : resttermen. Övningstal: 9.12, 9.16, 9.18, 9.22e, 9.23b, Övning 11 Ur kompletterande kurslitteratur om serier: 2a, 3a, 3b, 4c, 5c, 6.b; ur övningsboken: 9.1, 9.4, 9.9. Föreläsning : gränsvärden med hjälp av Taylor och l Hospital. Övningstal: 9.28b, 9.29a, 9.30a, 9.33, 9.35, 9.38abc. 5
6 Övning 12 kontrollskrivning 4 första timmen; därefter en gammal tentamen. Föreläsning 25 Repetition. Övning 12 kontrollskrivning 4 första timmen; därefter en gammal tentamen (för även om kursen 5B1147 är ny, så har det funnits envariabelstentor sedan urminnes tider). 6
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). kurspm SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008. Detta är en grundläggande kurs i differential- och integralkalkyl för
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). Kursplan SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009. Denna kursplan nås via kursens hemsida /index.html som finns under http://www.math.kth.se/math/gru/2009.2010/sf1625/cmast/
SF1626 Flervariabelanalys, 7.5 hp, för M1 vt 2009.
KTH Matematik, Jockum Aniansson, efter Olle Stormark. KursPM SF1626 Flervariabelanalys, 7.5 hp, för M1 vt 2009. Flervariabelanalysen är en rättfram generalisering av envariabelsmatematiken till funktioner
SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009.
SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009. Kurt Johansson, Inst för Matematik, KTH 2 mars 2009 Kursinnehåll: Grundläggande kurs i differential- och integralkalkyl i flera variabler.
SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008.
SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. Anders Karlsson, Inst för Matematik, KTH January 22, 2008 Kursinnehåll: Grundläggande kurs i di erential- och integralkalkyl i era variabler.
KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001
INSTITUTIONEN FÖR MATEMATIK Per Sjölin KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 Kursledare: Per Sjölin, rum 3632, Lindstedtsvägen 25, tel 790 7204, pers@math.kth.se.
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med
Matematik och statistik NV1, 10 poäng
UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 2006 Matematik och statistik NV1, 10 poäng Välkommen till Matematiska institutionen och kursen Matematik och statistik NV1, 10p. Kursen består
Planering Analys 1, höstterminen 2011
Nr 1 Matematikcentrum Matematik NF Planering Analys 1, höstterminen 2011 Program Anders Olofsson Kurslitteratur: Adams RA, Essex C, Calculus a complete course, sjunde upplagan, 2010 (A). Gamla tentor delas
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
Övningsuppgifter. 9 Linjer i planet och rummet Plan i rummet : 32, 33 Övningar4(sida 142) exempel
Detaljplanering: Kurs: Matematik I HF1903, År 2013/14 Period: P1, Rekommenderande uppgifter i boken Matematik för ingenjörer, Rodhe, Sollervall er finns på kursens webbadress : www.sth.kth.se/armin/ar_13_14/hf1903/dirhf1903_13_14.html
SF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016
Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016 Kursansvarig/Examinator: Staffan Lundberg, TVM Telefon: 0920-49 18 69 Rum: E882 E-post: Lärare i Skellefteå: Eva Lövf, tfn. 0910-58 53
Matematik 2 för media, hösten 2001
Matematik 2 för media, hösten 2001 Välkomna till Matematik 2 kursen! Lärare Föreläsare Tommy Ekola tel. 790 66 59 epost ekola@math.kth.se rum 3734, plan 7, matematikinstitutionen Assistenter Mattias Andersson
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte.
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. Att läsa matte är en väldigt aktiv process. Det handlar inte om att bara skumma texten. Att läsa matte är att aktivt återskapa och internalisera
Kursinformation, TNIU19 Matematisk grundkurs fo r byggnadsingenjo rer, 6 hp
Kursinformation, TNIU19 Matematisk grundkurs fo r byggnadsingenjo rer, 6 hp Grundläggande matematik för ingenjörsstudenter vid Byggnadsteknisk utbildning en förberedande matematikkurs inför kursen Envariabelanalys
Kursplan. Matematik A, 30 högskolepoäng Mathematics, Basic Course, 30 Credits. Mål 1(5) Mål för utbildning på grundnivå.
1(5) Denna kursplan är nedlagd eller ersatt av ny kursplan. Kursplan Institutionen för naturvetenskap och teknik Matematik A, 30 högskolepoäng Mathematics, Basic Course, 30 Credits Kurskod: MA1000 Utbildningsområde:
Kursinformation och studiehandledning, Matematik III - Differentialekvationer, komplexa tal och transformteori, Lp III 2016.
Institutionen för teknikvetenskap och matematik Kursinformation och studiehandledning, Matematik III - Differentialekvationer, komplexa tal och transformteori, Lp III 2016. Kursansvar: Staffan Lundberg,
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012.
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare
Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt
Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,
ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Thomas Önskog ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP Kurskod: 1MA013. Kurslitteratur: Robert Adams, Christopher Essex, Calculus : a complete course. Pearson
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013.
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare
Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik
Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik Fristående matematikkurs vid ITN (Institutionen för Teknik och Naturvetenskap i Norrköping) en förberedande matematikkurs inför kurser
ENDIMENSIONELL ANALYS FÖR C, D OCH BME HT 2013, DELKURS A2, 5 HP
LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR C, D OCH BME HT 2013, DELKURS A2, 5 HP Kurskod: FMAA01 Kurschef: Magnus Aspenberg, rum 343 Matematiska Institutionen.
Kursinformation och studiehandledning, M0043M Matematik II Integralkalkyl och linjär algebra, Lp II 2016.
Kursinformation och studiehandledning, M0043M Matematik II Integralkalkyl och linjär algebra, Lp II 2016. Examinator, kursansvarig: Staffan Lundberg. Rum: E 882. E-post: lund@ltu.se Telefon: 0920-49 18
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a, b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Planering Matematik II Period 3 VT Räkna själv! Gör detta före räkneövningen P1. 7, 17, 21, 37 P3. 29, 35, 39 P4. 1, 3, 7 P5.
Avsnitt 1, Inledning ( Adams P1,P3,P4, P5) Genomgång och repetition av grundläggande begrepp. Funktion, definitionsmängd, värdemängd. Intervall. Olikheter. Absolutbelopp. Styckvis definierade funktioner.
Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida.
Kursinformation för Komplex analys, 3p, ht 2006. Civ.ing. (Teknisk Fysik) Ingår som ett moment i kursen Fysikens matematiska metoder, 10p. Ulf Backlund Kursstart Kursen startar tisdagen den 10 oktober
Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts.
5B1103, Differential och integralkalkyl II, del 1. LÄSANVISNINGAR TILL R.A. ADAMS, CALCULUS, A COMPLETE COURSE, 4TH ED. OMFATTNING: kapitel 1.1 1.5, Appendix III, 2, 3.1 3.4, 3.5 till def. 13, 17.7 t.o.m.
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
TNA004 Analys II, 6 hp för ED, KTS och MT Kursinformation VT Sixten Nilsson,
TNA004 Analys II, 6 hp för ED, KTS och MT Kursinformation VT-017 Sixten Nilsson, sixten.nilsson@liu.se 1. Mål och innehåll Se studiehandboken. Kurslitteratur Forsling-Neymark: Matematisk analys, en variabel,
5B1107 Differential- och integralkalkyl II, del 2 för F1, 6 poäng, vt 2002.
Institutionen för Matematik,KTH Olle Stormark 5B1107 Differential- och integralkalkyl II, del 2 för F1, 6 poäng, vt 2002. Kurslitteratur: Calculus av Robert A. Adams (fourth edition). Kursen omfattar följande
TNA003 Analys I, 6 hp för ED, KTS, MT Kursinformation VT Kursansvarig: Sixten Nilsson,
TNA003 Analys I, 6 hp för ED, KTS, MT Kursinformation VT1-2017 Kursansvarig: Sixten Nilsson, sixten.nilsson@liu.se 1. Mål och innehåll Se studiehandboken 2. Kurslitteratur Forsling-Neymark Matematisk analys
SF1625 Envariabelanalys
Föreläsning 2 Institutionen för matematik KTH 31 augusti 2016 Att göra denna vecka Översikt över modul 1 Funktion Definitionsmängd Värdemängd Udda, jämn Begränsad Absolutbelopp, Trigonometri, Polynom Gränsvärde
ENDIMENSIONELL ANALYS FÖR C OCH D HT 2018, DELKURS B1, 8 HP
LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR C OCH D HT 2018, DELKURS B1, 8 HP Kurskod: FMAA05 Kurschef: Magnus Aspenberg, rum 545 Matematiska Institutionen. Tel.
Förord till läraren. 1. Mer praktisk information
10 Förord till läraren Förord till studenten innehåller praktisk information om bokens uppbyggnad. Det gäller exempel, teknikproblem, bevis, dialoger, rekommenderade övningar, matematiska fortsättningar,
TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier
Kurs-PM MATEMATIK 2 (7.5 hp) P4, HF1000, ( tidigare 6H3011) Kursansvarig: Armin Halilovic, http://www.sth.kth.se/armin E-Mail armin@sth.kth.se rum 5046, Campus Haninge KURSFORDRINGAR: Examination: Godkända
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
BML131, Matematik I för tekniskt/naturvetenskapligt basår
BML131 ht 2013 1 BML131, Matematik I för tekniskt/naturvetenskapligt basår Syfte och organisation Matematiken på basåret läses i två obligatoriska kurser; under första halvan av hösten BML131 (Matematik
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
TATA79 Inledande matematisk analys (6hp)
Inledande matematisk analys (6hp) Kursinformation HT 2016 Examinator: David Rule Innehåll 1 Kursinnehåll 2 1.1 Grundlägande koncept och verktyg........................ 2 1.2 Geometri och reela tal...............................
Endimensionell analys B2 BiLV
- Hem Hem Om kursen Kurs URL (för B2-delen) http://ctr.maths.lu.se/matematiklth/courses Kursansvarig: Mario Natiello (http://www.maths.lu.se/staff/mario-natiello/) Övningsassistenter: Mario Natiello (Bi),
ENDIMENSIONELL ANALYS FÖR C OCH D HT 2016, DELKURS B1, 8 HP
LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR C OCH D HT 2016, DELKURS B1, 8 HP Kurskod: FMAA05 Kurschef: Magnus Aspenberg, rum 545 Matematiska Institutionen. Tel.
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht Kurs-PM SF1658
SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht 2008 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
TATA68 Matematisk grundkurs, 6hp Kurs-PM ht 2018
TATA68 Matematisk grundkurs, 6hp Kurs-PM ht 2018 Göran Forsling All kursinformation finns också kurssidan i Lisam Innehåll 1 Kursinnehåll 2 1.1 Reella och komplexa tal.............................. 2 1.2
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
ENDIMENSIONELL ANALYS FÖR C, D OCH BI HT 2015, DELKURS B1, 8 HP
LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN ENDIMENSIONELL ANALYS FÖR C, D OCH BI HT 2015, DELKURS B1, 8 HP Kurskod: FMAA05 Kurschef:, rum 545 Matematiska Institutionen. Tel. 046-222 0553. Email: magnusa@maths.lth.se
TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2015
TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2015 Fredrik Andersson Mikael Langer Johan Thim All kursinformation finns också på courses.mai.liu.se/gu/tatm79 Innehåll 1 Kursinnehåll 2 1.1 Reella och komplexa
SF1624 Algebra och geometri
SF1624 Algebra och geometri Första föreläsningen Mats Boij Institutionen för matematik KTH 26 oktober, 2009 Översikt Kurspresentation Komplexa tal Kursmålen Efter genomgången kurs ska studenten vara förtrogen
Faktiska förkunskapskrav för vissa behörigheter
Malmö högskola / Gemensamt verksamhetsstöd Studentcentrum 1(5) Mars 2016 Faktiska förkunskapskrav för vissa behörigheter Ersättning för behörighetskursen Engelska B En del utbildningar anger Engelska B
Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur
UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:
+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1
Välkommen till MVE340 Matematik B för Sjöingenjörer Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 35 57 Kontor: L3037 i matematikhuset, Johanneberg Kursinnehåll i stora drag Funktioner
Förkunskaper Studenten skall för att kunna tillgodogöra sig kursen ha förkunskaper motsvarande Matematik A, B och C i gymnasieskolan.
5B1134 Matematik och modeller, 4 poäng, ht 2004 Kurs-PM 2004-08-28 Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C till de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
Matematik i Gy11. 110912 Susanne Gennow
Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella
LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR I OCH L HT 2012, DELKURS B1, 8 HP
LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR I OCH L HT 2012, DELKURS B1, 8 HP Kurskod: FMAA05 Kurschef: Magnus Aspenberg, rum 343 Matematiska Institutionen. Tel.
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,
SF1625 Envariabelanalys
Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.
x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7
TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga
TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2019
TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2019 Fredrik Andersson Mikael Langer Johan Thim All kursinformation finns också på courses.mai.liu.se/gu/tatm79 Innehåll 1 Kursinnehåll 2 1.1 Reella och komplexa
Envariabel SF1625: Föreläsning 11 1 / 13
Envariabel SF1625: Föreläsning 11 1 / 13 Att göra denna vecka 2 / 13 Översikt över modul 4 (seminarium nästa måndag) Förändringstakter (4.1) Newton-Raphson (4.2) L Hopitals regel (4.3) Analys av funktioner
Lösning till tentamen i 5B1126 Matematik förberedande kurs för TIMEH1, , kl
Institutionen för Matematik, KTH, Olle Stormark. Lösning till tentamen i 5B116 Matematik förberedande kurs för TIMEH1, 5-1-19, kl. 8 1. Tentamensskrivningen består av 4 moment, svarande mot kursens olika
Modul 1 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation
Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.
Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella
SF1625 Envariabelanalys
Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel
1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK
KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK ELIN GÖTMARK MATS JOHANSSON INSTITUTIONEN FÖR MATEMATIK OCH MATEMATISK STATISTIK UMEÅ UNIVERSITET Date: 3 augusti 202.
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
Tentamen i Envariabelanalys 1
Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,
7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter
TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga
91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015
91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015 Johan Thim All kursinformation finns också på www.liu.se/utbildning/program/amneslarare-gy/student/termin-2/matematik-91ma11 www.liu.se/utbildning/program/amneslarare7-9/student/termin-2/matematik-91ma17
ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle
Humanistiska och teologiska fakulteterna ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd
Teorifrå gor kåp
Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför
2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen
Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen
KURSPLANERING 5B1138 REELL ANALYS II, VT06
KURSPLANERING 5B1138 REELL ANALYS II, VT06 Kursen Reell analys II, 7p, är en mer avancerad alternativkurs till 5B1107 Diff&Int II, 6p. Teori och bevis betonas något mer än i den ordinarie kursen, men god
Modul 1: Funktioner, Gränsvärde, Kontinuitet
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och
Modul 1: Funktioner, Gränsvärde, Kontinuitet
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
Linjär algebra och geometri 1
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear
Hållfasthetslära Z2, MME175 lp 3, 2005
Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling
Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall
FYSA21 Teori, höstterminen 2013 Naturvetenskapliga tankeverktyg
Nr 1 Matematikcentrum Matematik NF FYSA21 Teori, höstterminen 2013 Naturvetenskapliga tankeverktyg Program 2 september 20 december Föreläsare: Anders Olofsson, rum 520 Matematik NF, Sölvegatan 18, telefon:
Flervariabelanalys. Undervisning Undervisning sker i form av föreläsningar (39 st) och lektioner (20 st).
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Vårterminen 2012 Flervariabelanalys för F1, KandMa1, KandFy1 och Gylärare Kursen behandlar följande ämnen: 1. Flervariabelanalys. Kursbok är Calculus: a complete
5B B1134 Matematik och modeller, 4 poäng, ht 2006 Kurs-PM
2006-08-30 5B1134 Matematik och modeller, 4 poäng, ht 2006 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
SF1624 ALGEBRA OCH GEOMETRI FÖR CINTE OCH CMIEL KURS-PM HT09
SF1624 ALGEBRA OCH GEOMETRI FÖR CINTE OCH CMIEL KURS-PM HT09 1. KURSPLAN 1.1. Kursens mål. Efter genomgången kurs ska studenten vara förtrogen med grundläggande algebra och linjär algebra. Det innebär
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.
TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande