Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt
|
|
- Jan-Erik Ekström
- för 8 år sedan
- Visningar:
Transkript
1 Föreläsning Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: tor-4-dec Hörsal G N210 A302 A303 MC413 C: fre-5-dec Hörsal G C: 2.10, mån-8-dec Hörsal G N210 A302 A303 MC413 C: 5.7,6.1 tis-9-dec Hörsal G C: ons-10-dec Hörsal G N210 A302 A303 MC413 C: 6.5 tors-11-dec Hörsal G K: fre-12-dec Hörsal G N210 A302 A303 MC413 C: 7.1,7.3 mån-15-dec Hörsal G C: tis-16-dec Hörsal G C. 2.10, 7.9 ons-17-dec Hörsal A N260 MA166 MA176 MA346 K: tor-18-dec Hörsal G C: 3.7, K: 7.1 fre-19-dec Hörsal G N210 A302 A303 MC413 C: JULLOV ons-7-jan Hörsal G N210 A302 A303 MC413 C: 9.3 tors-8-jan Hörsal G Sista datum för inlämningsuppgift C: fre-9-jan Hörsal G N210 N220 N230 MC413 C: 9.6 mån-12-jan Hörsal G C: 9.7 tis-13-jan Hörsal G N210 N220 N230 MC413 C: ons-14-jan Hörsal G C tors-15-jan Hörsal G N210 N220 N230 MC413 rep. gamla prov Kursvärdering fre-16-jan Hörsal E, F, och G Tentamen lör-28-feb Östra paviljongen, sal 1 Omtentamen lör-18-april Östra paviljongen, sal 5 Omtentamen Förklaring förkortningar C: Calculus a cpmplete course 8th edition, Adams K: Kompendiet Endimensionell analys, Söderlund m.fl.
2 Examinationsregler Examinationen omfattar en tentamen och en inlämningsuppgift som kan ge bonus till tentamen. Anmälan till tentamen är obligatorisk och görs via Portalen, under fliken Mina studier, senast 10 dagar innan tentamen. Inlämningsuppgiften kan ge maximalt 4 bonuspoäng som får tillgodoräknas på ordinarie tentamen den 16 januari, men inte på senare tentamen eller kurstillfällen. Tentamen kan ge maximalt 50 poäng, så inlämningsuppgift och tentamen kan tillsammans ge totalt 54 poäng. För betyg 3 krävs totalt minst 25 poäng, betyget 4 kräver minst 33 poäng, och betyget 5 minst 40 poäng. För att få bonuspoäng till tentamen för inlämningsuppgiften krävs att den lämnas in för bedömning senast kl Rapporten (som PDF-dokument) och de M-filer du använt laddas upp på Cambro under fliken Uppgifter. Observera att inlämningsuppgiften ska göras individuellt. Du med fördel ta med en bärbar dator med MATLAB installerad till lektionerna och få hjälp med datoruppgifter. Installationsguide av MATLAB under Campuslicens finns här: Lärare Föreläsningar (kursansvarig), tel , e-post: mats.bodin@math.umu.se Lektioner André Berglund (Grupp 1: efternamn A-E) Klara Leffler (Grupp 2: efternamn F-Le) Rikard Anton (Grupp 3: efternamn Li-R) (Grupp 4: efternamn S-Ö). Salar Karta över salar finns på Hörsal G: Humanisthuset Hörsal A: Samhällsvetarhuset M-salar: MIT-huset N-Salar: Naturvetarhuset A-salar: Teknikhuset Kurslitteratur Calculus a complete course, Adams, R. A., 8th edition, ISBN: Kompendiet Endimensionell analys, Söderlund m.fl., PDF finns i filsamlingen på kursidan i Cambro
3 Rekommenderade uppgifter Kapitel 5: Integralen 5.1: 3, 5, 9, 11, 15, 17, 21, 25, : 3, 5, 11, 17, : 3, 5, 7, 11, : 1, 3, 7, 9, 13, 21, 27, 31, : 3, 7, : 1, 3, 5, 7, 9, 13, 15, 21, 39, 41, : 3, 5, 7, 9, 17, 21, 25, 41, : 5, 9, 15, 17, 19, 29 Kapitel 6 och Kompendiet kap. 5: Integrationstekniker och numerisk integration 6.1: 1, 3, 5, 9, 13, 19, 21, : 1, 3, 5, 9, 13, 17, 23, : 1, 3, 7, 15, 17, 19, : 1, 5, 9, 15, 19, 23, 31, 35 K5: 5.2.1, 5.2.2, 5.3.1, 5.3.2, 5.3.3, 5.4.1, 5.4.2, Kapitel 7, 2.10, 3.7 och Kompendiet kap. 6-7: Tillämpningar och differentialekvationer 7.1: 1, 3, 5, 11, 13, : 1, 5, 9, 15, 21, 25, : 1, 3, 5 7.5: 1, : 29, 31, 33, : 1, 3, 5, 7, 11, 13, 15, 21, 23 K6: 6.1.1, 6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.3.1, 6.3.2, : 1, 3, 5, 7, 9, 13, 15, 19, 21, 25 K7: 7.1.1, 7.1.2, Kapitel 9: Serier 9.1: 3, 7, 9, 17, 19, 23, 27, : 1, 3, 5, 7, 9, 11, 19, 27, 28, 29, : 1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, : 1, 3, 5, 11, 15, 17, 19, 21, 23, : 1, 3, 5, 7, 13, 15, 17, : 1, 3, 7, 17, 19, 23, 33, 35, : 1, 3, 15, 17, 23, 24, 25 Kapitel 8: Parametriska kurvor 8.2: 1, 3, 5, 7, 9, : 3, 5, 9, 11, : 1, 3, 5, 7 8.5: 1, 3, 9, 13, 19
4 Kursinnehåll Det övergripande kursinnehållet anges i kursplanen, som också beskriver de förväntade studieresultaten. Nedan anges förväntade studieresultat och i vilka kapitel de återfinns. Förväntade studieresultat redogöra för centrala satser som behandlas på kursen (Kap. 5-9, Kompendiet) redogöra för Riemannintegralen och dess viktigaste egenskaper (Kap. 5) använda integrationsmetoder för att bestämma primitiva funktioner och beräkna generaliserade integraler (2.10, Kap. 5-7) tillämpa integraler för att lösa differentialekvationer (2.10, 3.7, 7.9, Kompendiet) uttrycka kurvor på parametrisk form (Kap. 8) redogöra för konvergens av följder och serier (Kap. 9) avgöra konvergens med hjälp av konvergenskriterier (Kap. 9) använda numeriska metoder för att approximera bestämda integraler (Kompendiet) implementera numeriska algoritmer (Kompendiet) Definitioner och satser Definitioner (begrepp) är grundläggande inom matematiken och satser byggs upp av definitioner och deras inbördes relationer. Därför är det viktigt att inte underskatta definitioners betydelse, och behärska definitioners exakta lydelse. Du ska behärska de definitioner och satser som tas upp i de avsnitt som ingår i kursen, men några är särskilt viktiga och kan komma som uppgifter på tentamen. De definitioner som kan komma som uppgift att formulera på tentamen är markerade Definiera. Deras lydelse ska du kunna återge exakt. De satser du ska kunna bevisa på tentamen är markerade Bevisa. Dessa ska du också kunna formulera, och beviset skall vara på samma detaljnivå som i boken. Var noga med att ange alla förutsättningar i satsen och var i beviset du använder dessa förutsättningar. I listan anges förutom dessa ytterligare ett antal satser och metoder som är viktiga att behärska. Kapitel 5: Integralen Definiera översummor och undersummor (Definition 2, s. 300) Definiera bestämd integral (Definition 3, s. 302) Definiera Riemannsummor (s. 303) Den bestämda integralens egenskaper (Sats 3, s. 306) Kontinuerliga funktioner är integrerbara (Sats 2, s. 304) Bevisa Medelvärdessatsen för integraler (Sats 4, s. 308) Bevisa Integralkalkyles fundamentalsats (Sats 5, s. 311) Substitution i en bestämd integral (Sats 6, s. 320)
5 Kapitel 6: Integrationstekniker Partiell integration (s. 333) Inversa substitutioner (Calculus, kap. 6.3) Partialbråksuppdelning (Sats 1, s. 345) Konvergens av p-integraler (Sats 2, s. 364) Jämförelsesats för integraler (Sats 3, s. 366) Kapitel 7: Tillämpningar Beräkna volymen av en rotationskropp (Tabell 1, s. 398) Beräkna båglängd av en kurva och arean av en yta (Calculus, kap. 7.3) Beräkna massa och masscentrum (Calculus, kap. 7.4) Beräkna geometriskt centrum (Centroider) av regioner i planet (Calculus, kap. 7.5) Lösa separabla differentialekvationer och första ordningens linjära ekvationer (Calculus, kap. 7.9) Kapitel 2.10 och 3.7: Differentialekvationer Definiera primitiv funktion (Definition 7, s. 149) Lösa begynnelsevärdesproblem (Calculus, kap. 2.10, 3.7, 7.9) Lösa andra ordningens differentialekvationer med konstanta koefficienter (Calculus, kap. 3.7) Känna till dämpad och odämpad harmonisk svängning (Calculus, kap. 3.7) Kapitel 8: Parametriska kurvor Beräkna lutningen på tangenten till en parametrisk kurva (Sats 1, s. 476) Ta fram tangentens och normalens ekvation till en parametrisk kurva (Blå ruta, s. 477) Beräkna båglängd av parametriska kurvor (Calculus, kap. 8.4) Skriva en kurva med polära koordinater (Calculus, kap. 8.5) Kapitel 9: Serier Definiera gränsvärdet av en talföljd (Definition 2, s. 499) Gränsvärdesregler för talföljder (Blå ruta, s. 500) Bevisa att en konvergent talföljd är begränsad (Sats 1, s. 501) Definiera konvergens av en serie (Definition 3, s.505) formeln för den geometriska seriens partialsumma (s. 505) Bevisa satsen om den harmoniska seriens divergens (Exempel 4, s. 508) Bevisa att termerna i en konvergent serie konvergerar mot 0 (Sats 4, s. 508) Seriers konvergens (Sats 5-Sats7, s. 509) Integraltestet (Sats 8, s. 511) och feluppskattning på felet (Blå ruta, s. 513) Konvergens av p-serier (Exempel 1, s. 512) Bevisa jämförelsetestet (Sats 9, s. 514) Kvottestet (Sats 11, s. 517) och Rottestet (Sats 12, s. 518)
6 Definiera absolutkonvergent serie (Definition 5, s. 521) Definiera betingat konvergent serie (Definition 6, s. 522) Leibniz konvergenskriterium (Sats 14, s 522) Konvergens av potensserier (Sats 17, s. 528) Termvis derivering och integrering av potensserier (Sats 19, s. 532) Bevisa formeln för sambandet mellan potensseriens koefficienter och funktionen f(x) som den svarar mot (Sats 21, s 537) Definiera Taylorserier och Maclaurinserier (Definition 8, s. 538) Taylors sats med resttermer (Sats 22, s. 544) Kompendiet: Numeriska metoder Bevisa feluppskattning för Mittpunktsmetoden (Kompendiet, Sats 5.1) Mittpunktsmetoden och trapetsmetoden (Kompendiet, Kap ) Feluppskattning för Trapetsmetoden (Kompendiet, Sats 5.2) Implementera numeriska integrationsmetoder i MATLAB (Kompendiet, kap. 5) Eulers metod och kunna implementera den i MATLAB (Kompendiet, kap. 6) Skriva en högre ordningens differentialekvation som ett system av differentialekvationer (Kompendiet, Kap. 7)
KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001
INSTITUTIONEN FÖR MATEMATIK Per Sjölin KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 Kursledare: Per Sjölin, rum 3632, Lindstedtsvägen 25, tel 790 7204, pers@math.kth.se.
5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006.
Institutionen för Matematik, KTH, Olle Stormark. 5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006. Detta är en grundläggande kurs i differential - och integralkalkyl för funktioner av en variabel. Enligt
Planering Analys 1, höstterminen 2011
Nr 1 Matematikcentrum Matematik NF Planering Analys 1, höstterminen 2011 Program Anders Olofsson Kurslitteratur: Adams RA, Essex C, Calculus a complete course, sjunde upplagan, 2010 (A). Gamla tentor delas
Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts.
5B1103, Differential och integralkalkyl II, del 1. LÄSANVISNINGAR TILL R.A. ADAMS, CALCULUS, A COMPLETE COURSE, 4TH ED. OMFATTNING: kapitel 1.1 1.5, Appendix III, 2, 3.1 3.4, 3.5 till def. 13, 17.7 t.o.m.
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). kurspm SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008. Detta är en grundläggande kurs i differential- och integralkalkyl för
ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Thomas Önskog ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP Kurskod: 1MA013. Kurslitteratur: Robert Adams, Christopher Essex, Calculus : a complete course. Pearson
Planering Matematik II Period 3 VT Räkna själv! Gör detta före räkneövningen P1. 7, 17, 21, 37 P3. 29, 35, 39 P4. 1, 3, 7 P5.
Avsnitt 1, Inledning ( Adams P1,P3,P4, P5) Genomgång och repetition av grundläggande begrepp. Funktion, definitionsmängd, värdemängd. Intervall. Olikheter. Absolutbelopp. Styckvis definierade funktioner.
Dagens ämnen. Potensserier
Dagens ämnen 1 / 6 Dagens ämnen Potensserier 1 / 6 Dagens ämnen Potensserier Definition 1 / 6 Dagens ämnen Potensserier Definition Var konvergerar potensserien? 1 / 6 Dagens ämnen Potensserier Definition
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
SF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida.
Kursinformation för Komplex analys, 3p, ht 2006. Civ.ing. (Teknisk Fysik) Ingår som ett moment i kursen Fysikens matematiska metoder, 10p. Ulf Backlund Kursstart Kursen startar tisdagen den 10 oktober
Flervariabelanalys. Undervisning Undervisning sker i form av föreläsningar (39 st) och lektioner (20 st).
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Vårterminen 2012 Flervariabelanalys för F1, KandMa1, KandFy1 och Gylärare Kursen behandlar följande ämnen: 1. Flervariabelanalys. Kursbok är Calculus: a complete
TATA42: Föreläsning 6 Potensserier
TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a
Repetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). Kursplan SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009. Denna kursplan nås via kursens hemsida /index.html som finns under http://www.math.kth.se/math/gru/2009.2010/sf1625/cmast/
Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,
KURSPLANERING 5B1138 REELL ANALYS II, VT06
KURSPLANERING 5B1138 REELL ANALYS II, VT06 Kursen Reell analys II, 7p, är en mer avancerad alternativkurs till 5B1107 Diff&Int II, 6p. Teori och bevis betonas något mer än i den ordinarie kursen, men god
Kursinformation och studiehandledning, Matematik III - Differentialekvationer, komplexa tal och transformteori, Lp III 2016.
Institutionen för teknikvetenskap och matematik Kursinformation och studiehandledning, Matematik III - Differentialekvationer, komplexa tal och transformteori, Lp III 2016. Kursansvar: Staffan Lundberg,
Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19
Dagens ämnen 1 / 19 Dagens ämnen Numeriska serier 1 / 19 Dagens ämnen Numeriska serier Definition av konvergens 1 / 19 Dagens ämnen Numeriska serier Definition av konvergens Jämförelsesatser 1 / 19 Dagens
TNA004 Analys II, 6 hp för ED, KTS och MT Kursinformation VT Sixten Nilsson,
TNA004 Analys II, 6 hp för ED, KTS och MT Kursinformation VT-017 Sixten Nilsson, sixten.nilsson@liu.se 1. Mål och innehåll Se studiehandboken. Kurslitteratur Forsling-Neymark: Matematisk analys, en variabel,
RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
5B1107 Differential- och integralkalkyl II, del 2 för F1, 6 poäng, vt 2002.
Institutionen för Matematik,KTH Olle Stormark 5B1107 Differential- och integralkalkyl II, del 2 för F1, 6 poäng, vt 2002. Kurslitteratur: Calculus av Robert A. Adams (fourth edition). Kursen omfattar följande
Kursinformation och studiehandledning, M0043M Matematik II Integralkalkyl och linjär algebra, Lp II 2016.
Kursinformation och studiehandledning, M0043M Matematik II Integralkalkyl och linjär algebra, Lp II 2016. Examinator, kursansvarig: Staffan Lundberg. Rum: E 882. E-post: lund@ltu.se Telefon: 0920-49 18
TATA42: Föreläsning 5 Serier ( generaliserade summor )
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje
gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal
Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket.
Institutionen för Matematik SF625 Envariabelanalys Läsåret 27-28 Lars Filipsson Modul 5: Integraler Denna modul handlar om integraler. Det slås fast i en precis definition vad som menas med att en funktion
Julia Viro KURSBESKRIVNING
Analys MN2 Uppsala universitet Matematiska institutionen Kursbeskrivning och läsanvisningar Julia Viro 2007-01-22 KURSBESKRIVNING Lärare: Julia Viro (julia@math.uu.se), föreläsningar och lektioner för
TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier
Kurs-PM MATEMATIK 2 (7.5 hp) P4, HF1000, ( tidigare 6H3011) Kursansvarig: Armin Halilovic, http://www.sth.kth.se/armin E-Mail armin@sth.kth.se rum 5046, Campus Haninge KURSFORDRINGAR: Examination: Godkända
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009.
SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009. Kurt Johansson, Inst för Matematik, KTH 2 mars 2009 Kursinnehåll: Grundläggande kurs i differential- och integralkalkyl i flera variabler.
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim
BML131, Matematik I för tekniskt/naturvetenskapligt basår
BML131 ht 2013 1 BML131, Matematik I för tekniskt/naturvetenskapligt basår Syfte och organisation Matematiken på basåret läses i två obligatoriska kurser; under första halvan av hösten BML131 (Matematik
Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n =
Serier Serier eller oändliga summor har flyktigt behandlats redan i tidigare kurser. Vi ska nu gå igenom teorin på ett lite mer systematiskt sätt. I många fall spelar det ingen roll om termerna a k är
Tentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
TNA004 Analys II. för ED, KTS, MT. Litteraturkommentarer till föreläsningarna
för ED, KTS, MT till föreläsningarna VT2 2017 TNA004 FÖ 1 Kap 7.1 7.2. Kommentarer 7.1 Plan area Area mellan funktionskurvor. Figurerna och texten på sid. 311 313 är viktigt för förståelsen av hela detta
Kursplan. Matematik A, 30 högskolepoäng Mathematics, Basic Course, 30 Credits. Mål 1(5) Mål för utbildning på grundnivå.
1(5) Denna kursplan är nedlagd eller ersatt av ny kursplan. Kursplan Institutionen för naturvetenskap och teknik Matematik A, 30 högskolepoäng Mathematics, Basic Course, 30 Credits Kurskod: MA1000 Utbildningsområde:
ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle
Humanistiska och teologiska fakulteterna ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd
SF1625 Envariabelanalys
Föreläsning 18 Institutionen för matematik KTH 12 december 2017 Idag Talföljder Serier Jämförelse med integraler (Cauchy s integralkriterium) Andra konvergenskriterier (jämförelsekriterier) Mer i morgon
SF1626 Flervariabelanalys, 7.5 hp, för M1 vt 2009.
KTH Matematik, Jockum Aniansson, efter Olle Stormark. KursPM SF1626 Flervariabelanalys, 7.5 hp, för M1 vt 2009. Flervariabelanalysen är en rättfram generalisering av envariabelsmatematiken till funktioner
KURSPLAN. HÖGSKOLAN I KALMAR Naturvetenskapliga institutionen. Fastställd av Nämnden för lärarutbildning och utbildningsvetenskap
KURSPLAN HÖGSKOLAN I KALMAR Naturvetenskapliga institutionen KURS MA200L Matematik och logiskt tänkande II 31-60 högskolepoäng Mathematics and mathematical thought processes II 31-60 higher education credits
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte.
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. Att läsa matte är en väldigt aktiv process. Det handlar inte om att bara skumma texten. Att läsa matte är att aktivt återskapa och internalisera
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Potensserielösningar Analytiska funktioner Konvergensradie Rot- och
Matematik och statistik NV1, 10 poäng
UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 2006 Matematik och statistik NV1, 10 poäng Välkommen till Matematiska institutionen och kursen Matematik och statistik NV1, 10p. Kursen består
Endimensionell analys B2 BiLV
- Hem Hem Om kursen Kurs URL (för B2-delen) http://ctr.maths.lu.se/matematiklth/courses Kursansvarig: Mario Natiello (http://www.maths.lu.se/staff/mario-natiello/) Övningsassistenter: Mario Natiello (Bi),
Läsanvisningar Henrik Shahgholian
Institutionen för matematik SF1626 Flervariabelanalys Läsanvisningar Henrik Shahgholian Läsanvisningarna nedan är har tagits fram som hjälpmedel för de studenter som vill helst ha en snabb tillgång till
SF1620 Matematik och modeller, 6 högskolepoäng, ht 2007
2007-09-03 SF1620 Matematik och modeller, 6 högskolepoäng, ht 2007 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Lösningsförslag till TATA42-tentan
Lösningsförslag till TATA-tentan 8-6-.. Då ekvationen är linjär av första ordningen löses den enklast med hjälp av integrerande faktor (I.F.). Skriv först ekvationen på standardform. (+ )y y + y + + y
Läsanvisningar till kapitel 4
Kapitel 4 Läsanvisningar till kapitel 4 Taylors sats samt Cauchyuppskattningar och några konsekvenser Taylorserier är något ni är bekannt med sedan era reellanalyskurser. Höjdpunkten i detta avsnitt säger
SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008.
SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. Anders Karlsson, Inst för Matematik, KTH January 22, 2008 Kursinnehåll: Grundläggande kurs i di erential- och integralkalkyl i era variabler.
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Läsanvisningar till kapitel
Läsanvisningar till kapitel 5. 5.8 5. Följder och serier Detta avsnitt är repetition, och jag hoppas att ni snart kan snappa upp det som står däri. Speciellt viktigt är det att komma ihåg vad en geometrisk
Lösningsförslag envariabelanalys
Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen
Hållfasthetslära Z2, MME175 lp 3, 2005
Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a, b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Generaliserade integraler. Definitionen. J amf orelsesatser. Vad skall vi j amf ora med? Absolutkonvergens Dagens amnen 1 / 10
Dagens ämnen 1 / 10 Dagens ämnen Generaliserade integraler. 1 / 10 Dagens ämnen Generaliserade integraler. Definitionen. 1 / 10 Dagens ämnen Generaliserade integraler. Definitionen. Jämförelsesatser. 1
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
Matematik 5 Kap 3 Derivator och Integraler
Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett
Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp
Statistiska institutionen VT2011 Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp MOMENTETS INNEHÅLL Momentet ger studenten kunskap om ett antal olika statistiska modeller och hur
TNA003 Analys I för ED, MT, KTS
TNA003 Analys I för ED, MT, KTS Litteraturkommentarer till föreläsningarna VT1 2017 Sixten Nilsson TNA003 FÖ 1: Kap 3.1 3.2 Litteraturkommentarer 3.1 Gränsvärdesidén Skilj på de två typerna av gränsvärden.
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Linjär algebra och geometri 1
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 1. Laborationsregler Läs detta dokument, lös uppgifterna i slutet, och lämna in en individuell laborationsrapport senast måndag 14 januari i pdf-format via
Föreläsning 1. X kallas för funktionens definitionsmängd, mängden av funktionens alla värden kallas funktionens värdemängd.
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www.math.uu.se/ rikardo/ envariabelanalys/huvudsidor/index.html Funktioner En funktion f, från mängden
TATA42: Föreläsning 10 Serier ( generaliserade summor )
TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal
5B B1134 Matematik och modeller, 4 poäng, ht 2006 Kurs-PM
2006-08-30 5B1134 Matematik och modeller, 4 poäng, ht 2006 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed.
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Del 2 (funktioner av flera variabler). Omfattning: Kapitel 8.2, 8.3 t.o.m. s 497, 8.4, endast båglängd, 8.5 tom s. 506, 10.1, 10.5,
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4.
Lösningar till MVE07 Matematisk analys i en variabel för I 8-0-0. (a Division ger y + 5x x 2 + 4 y x x2 + 4. 5x x 2 + 4 dx 5 2 ln(x2 + 4, vilket ger den integrerande faktorn (x 2 + 4 5/2. Ekvationen multipliceras
TATA79 Inledande matematisk analys (6hp)
Inledande matematisk analys (6hp) Kursinformation HT 2016 Examinator: David Rule Innehåll 1 Kursinnehåll 2 1.1 Grundlägande koncept och verktyg........................ 2 1.2 Geometri och reela tal...............................
KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng
1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT
Förkunskaper Studenten skall för att kunna tillgodogöra sig kursen ha förkunskaper motsvarande Matematik A, B och C i gymnasieskolan.
5B1134 Matematik och modeller, 4 poäng, ht 2004 Kurs-PM 2004-08-28 Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C till de första kurser i matematik som ges på KTHs civilingenjörsprogram,
SF1624 ALGEBRA OCH GEOMETRI FÖR CINTE OCH CMIEL KURS-PM HT09
SF1624 ALGEBRA OCH GEOMETRI FÖR CINTE OCH CMIEL KURS-PM HT09 1. KURSPLAN 1.1. Kursens mål. Efter genomgången kurs ska studenten vara förtrogen med grundläggande algebra och linjär algebra. Det innebär
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.
TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att
Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x.
Lösningar till MVE6 Matematisk analys i en variabel för I 7-4-. a Division ger yy + y x. Ekvationen är alltså separabel. Integration av vänstra ledet ger y + y dy ln + y Efter integration blir det alltså
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna
4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3,
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA151 Envariabelkalkyl, TEN1 Datum: 014-1-04
12. Numeriska serier NUMERISKA SERIER
122 12 NUMERISKA SERIER 12. Numerisa serier Vi har tidigare i avsnitt 10.9 sett ett samband mellan summor och integraler. Vi har ocså i avsnitt 11 definierat begreppet generaliserade integraler och för
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng)
Kursöversikt numpbio, 2013. 1 Beatrice Frock KTH Matematik, 130620 SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering för Bio3, 9 hp (högskolepoäng) Kursprogram 6 Design i Matlab
SG1107 Mekanik Vårterminen 2013
Kort beskrivning Mål Studenten ska kunna: Med utgångspunkt från ett konkret mekaniskt problem göra idealiseringar, och med motiveringar ställa upp (skapa) en matematisk modell, samt med matematiska och
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Om konvergens av serier
Om konvergens av serier Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuteras några av de grundläggande satserna som hjälper oss att avgöra om en serie
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
5B B1134 Matematik och modeller, 4 poäng, ht 2005 Kurs-PM
2005-08-31 5B1134 Matematik och modeller, 4 poäng, ht 2005 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
TNA003 Analys I, 6 hp för ED, KTS, MT Kursinformation VT Kursansvarig: Sixten Nilsson,
TNA003 Analys I, 6 hp för ED, KTS, MT Kursinformation VT1-2017 Kursansvarig: Sixten Nilsson, sixten.nilsson@liu.se 1. Mål och innehåll Se studiehandboken 2. Kurslitteratur Forsling-Neymark Matematisk analys
Tentamen i Komplex analys, SF1628, den 21 oktober 2016
Institutionen för matematik KTH Håkan Hedenmalm Tentamen i Komplex analys, SF68, den oktober 06 Skrivtid 4.00-9.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga motiveringar. För
Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic
Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
Generaliserade integraler. Definitionen. J amf orelsesatser. Vad skall vi j amf ora med? Absolutkonvergens Dagens amnen 1 / 12
Dagens ämnen 1 / 12 Dagens ämnen Generaliserade integraler. 1 / 12 Dagens ämnen Generaliserade integraler. Definitionen. 1 / 12 Dagens ämnen Generaliserade integraler. Definitionen. Jämförelsesatser. 1
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med
ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A/B 5 6 5 kl 8 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.. a) Bestäm Maclaurinpolynomet
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Lösning till tentamen i 5B1126 Matematik förberedande kurs för TIMEH1, , kl
Institutionen för Matematik, KTH, Olle Stormark. Lösning till tentamen i 5B116 Matematik förberedande kurs för TIMEH1, 5-1-19, kl. 8 1. Tentamensskrivningen består av 4 moment, svarande mot kursens olika