Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts.
|
|
- Erik Isaksson
- för 8 år sedan
- Visningar:
Transkript
1 5B1103, Differential och integralkalkyl II, del 1. LÄSANVISNINGAR TILL R.A. ADAMS, CALCULUS, A COMPLETE COURSE, 4TH ED. OMFATTNING: kapitel , Appendix III, 2, , 3.5 till def. 13, 17.7 t.o.m. s. 1012, 17.8 t.o.m. s. 1019, 4.2, 4.3 (endast andraderivatetestet), 4.4 t.o.m. exempel 5, 4.5, , 9.8 t.o.m. exempel 2, 4.9, 5, Appendix IV, 6.1, 6.2 t.o.m exempel 8, 6.3 exemplen 1 7, 6.5, , , 9.3 t.o.m. s. 541, 9.4 t.o.m. exempel 1, 9.5 t.o.m. s. 555 samt Th. 19. Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts. Kap. 1. Kontinuitet och gränsvärden. Appendix III. Kontinuerliga funktioner. 1.1 Detta avsnitt är av orienterande och motiverande karaktär Gränsvärdesbegreppet är fundamental i kursen. Du skall bilda dig intuitiv uppfattning om vad som menas med gränsvärde resp. ensidig gränsvärde för en funktion i en punkt (1.2) och i oändligheten (1.3). Testa dig själv på några av uppgifterna i läroboken. Oroa dig inte om du tycker att det kan vara svårt att komma på vilka knepp som leder till framgång: senare i kursen kommer du att bekanta dig med mycket kraftfulla metoder för beräkning av gränsvärden. Tänk igenom om/hur du använder Sats 1 resp. Sats 2 (s ) i dina beräkningar. 1.4 I detta avsnitt definieras kontinuerliga funktioner: Def. 5 8 och Sats 5, s De vanliga funktionerna är kontinuerliga: Nedre delen av s. 78 samt Sats 6 7, s. 79. Sats 8, s. 80 är mycket viktig. Man bör förstå att satsen inte är sann, och varför, om man ändrar någon av förutsättningar; se fig Sats 9, satsen om mellanliggande värden, används i tillämpningar för att approximera rötter till ekvationer. 1.5 Du bör förstå de formella definitionerna 9 11 i ljuset av de informella. Appendix III ger en teoretisk underbyggnad för kapitel 1 och bör läsas noga. Kap. 2. Derivation. 2.1 I detta avsnitt förbereds derivatans införande genom en diskution av lutning (slope) och tangentlinjer till kurvor y = f(x). Det mesta bör vara bekant från gymnasiet, men, notera formeln för normalens lutning, s Def. 4. Du bör i enkla exempel kunna beräkna derivator utgående från definitionen. Läs om Leibniz beteckningar och differentialer, s Du skall veta att deriverbarhet medför kontinuitet (Sats 1, s. 110). Deriveringsreglerna i Sats 2 5 måste man behärska; det finns inget utrymme för att göra fel här. Deriveringsreglerna skall sitta i ryggmärgen. 2.4 Kedjeregeln, Sats 6, s. 119, är en hörnsten i differentalkalkylen och måste behärskas aktivt. sin t 2.5 Med hjälp av gränsvärdet lim (Sats 8, s. 124), kan man härleda derivatan till sinusfunktionen. Trigonometriska formler ger, tillsammans med deri- t 0 t 1
2 veringsreglerna, uttryck för derivatorna till cosinus, tangens och cotangensfunktionerna, som man också skall kunna. Observera att derivatan av tangens 1 kan skrivas (tan x) = cos 2 x = 1 + tan2 x. Anm. I engelspråkig litteratur används ofta sekantfunktionerna sec x, osv. Vi kommer inte att göra detta. 2.6 Medelvärdessatsen (Sats 11, s. 131) är mycket viktig. Satsens geometriska betydelse framgår av figur Figur 2.26 på samma sida visar att man inte kan ändra på någon av satsens förutsättningar. Med hjälp av medelvärdessatsen kan man dra slutsatser om en funktions avtagande/växande (dessa begrepp införs i def. 5) om man vet derivatans tecken i ett intervall. Det viktigaste ur tillämpningssynpunkt är just detta, formulerat i Sats 12, s Det är lätt att övertyga sig själv om att medelvärdessatsen gäller i det fall då funktionen antar lika värden i intervallets ändpunkter (Rolles sats, s. 134). Notera att man behöver här satsen om största och mista värde (max/min Theorem 8, s. 80). Från Rolles sats får man medelvärdessatsen genom ett slags variabelbyte; se fig. 2.30, s Det kan vara bra att skumma igenom detta avsnitt för att bekanta sig med några tillämpningar av derivatan. 2.8 Högre ordningens derivator införs på naturligt sätt. 2.9 Exemplen 1 6 illustrerar hur man bestämer derivatan till en funktion y = f(x) då funtionen ges av ekvationen F(x,y) = Antiderivata (primitiv funktion), def. 7, och obestämd integral, def. 8. Differentialekvationer och begynnelsevärdesproblem, s Hastighet, fart och acceleration. Läs exemplen 1 6. Kap. 3. Transcendenta funktioner. 3.1 Inverterbara (one to one) funktioner, def. 1. Invers funktion, def. 2, och dess egenskaper, s Figurerna visar hur man får fram inversen genom att spegla funktionen i linjen y = x. Inversens derivata, mitt på s. 177 och förklarande figur 3.6. (3.2) ingår i inledande kurs. Repetera gärna avsnittet. 3.3 Här införs funktionen ln x som area av ett område mellan kurvan y = 1/x och x axeln. Man visar (Sats 1) att ln x är den primitiva funktionen till 1/x som antar värdet 0 för x = 1. Från denna sats följer sedan logaritmlagarna (Sats 2) direkt. Exponentialfunktionen införs som invers till ln x och exponentiallagarna (Sats 3) följer av logaritmlagarna. Man definierar talet e genom e = exp 1 och visar att exp x = e x. Sambandet (def. 7) är viktig. Någon gång kan du ha användning av logaritmisk derivering (Exemplen 8 10). 3.4 Exponentiell och logaritmisk tillväxt: Sats 5, och dess sammanfattning i rutan på s Funktionen e x som gränsvärde (Sats 6). 3.5 Sinus och andra trigonometriska funktioner är periodiska och därmed inte inverterbara: alla värden antas ju oändligt många gånger. Genom att betrakta dem på lämpliga delintervall, kan man invertera. På så sätt får man arcusfunktionerna (def. 9, 11 och 12 samt fig. 3.18, 3.22 och 3.25(a)). Derivator av arcusfunktioner (s. 203, 206 och 208). Avsnittet bör läsas med ordentlig eftertanke. (Inverser till sekantfunktionerna, s ingår inte.) 2
3 Kap. 17. Ordinära differentialekvationer Karakteristiska ekvationen (**), s Beroende av hur de karakteristiska rötterna ser ut, uppstår tre fall (s ). De kan beskrivas som (I) skilda reella rötter, (II) sammanfallande reella rötter, samt (III) icke reella rötter. Läs exempel Den allmänna lösningen till en inhomogen ekvation är y h + y p, där y p är en godtycklig (vilken som helst) partikulärlösning, och där y h är den allmänna lösningen till motsvarande homogena ekvation. Ansats för partikulära lösningar (i enkla fall) ges i rutan på s Resonans på s (Variation av parametrar, s ingår inte.) Kap. 4. Tillämpningar av derivator. (4.1) Ingår inte. Det kan ändå vara bra att skumma igenom exemplen Extremvärden: def. 1 (globala), def. 2 (lokala). Kritiska punkter, singulära punkter. Sats 1, s. 234 är max/min satsen från kap. 1 (s. 80). Sats 2 (s. 235) och Sats 3 (s. 236) är mycket viktiga. De ger en metod för att finna största och minsta värden till en kontinuerlig funktion på ett slutet och begränsat intervall. 4.3 I detta avsnitt ingår bara andraderivatatestet, Sats 6, s Endast asymptotbegrepet, def Läs exempel I avsnittet behandlas ostrukturerade max/min problem. Man måste själv formulera problemen matematiskt. 4.7 Formeln för linjär approximation (dvs. approximation av en funktionsgraf med dess tangentlinje) enligt def. 8, s Felet vid approximationen enligt Sats 9, s Taylors formel, Sats 10, s. 282, är en generalisering av linjär approximation. Denna gång approximeras funktionen med ett polynom av högre grad. Storleksordningen på restermen i en Taylorutveckling kan på ett bekvämt sätt beskrivas med hjälp av stort ordobegreppet (big O, def. 9). Utvecklingarna i rutan på s. 286 skall memoreras. 9.8 T.o.m. exempel l Hôpitals regel (Sats 12, s. 290 och Sats 13, s. 292) är det viktigaste verktyget för beräkning av gränsvärden. Kap. 5. Integration. Appendix IV Här diskuteras areabegreppet och beräkning av areor genom gränsövergång. Man bör genomföra någon sådan beräkning för att till fullo uppskatta effektiviteten i den metod vi senare beräknar integraler med. 5.3 Bestämda integraler införs genom över och undersummor. Idén är att då indelningen blir finare skall, för integrerbara (def. 3) funktioner, dess över och undersummor båda ha samma gränsvärde, integralen av funktionen. Sats 2, s. 316, visar att denna procedur fungerar för kontinuerliga funktioner. Appendix IV I avsnitt 5.3 definierades den bestämda integralen endast för kontinuerliga funktioner. Med den teknik som används i appendix IV utvidgas begreppen integrerbar / icke integrerbar till godtyckliga begränsade funktioner. 3
4 5.4 Här härleds diverse egenskaper till den bestämda integralen (Sats 3, s ). Integralkalkylens medelvärdessats (Sats 4, s. 320) kommer in i den oumbärliga Integralkalkylens fundamentalsats i nästa avsnitt. 5.5 Sats 5, Integralens fundamentalsats, är vad gör integralen till ett användbart verktyg, genom kopplingen till differentialkalkylen. Satsen visar att varje kontinuerlig funktion har en primitiv funktion. 5.6 Variabelsubstitution i integraler, Sats 6, s. 322, innebär att man använder kedjeregeln baklänges. Det är en viktig metod. I samband med integrering av trigonometriska funktioner bör man känna till formlerna för dubbla vinkeln (se nedre halvan av s. 335). 5.7 Beräkning av area mellan två kurvor. Man måste först bestämma kurvornas skärningspunkter och sedan kontrollera vilken av funktionerna som är störst i resp delintervall. Därefter beräknas integralen på vanligt sätt. Kap. 6. Beräkning av integraler. 6.1 Formeln för partiell integration (ruta på s. 345) är viktig. Den följer av produktregeln för derivator. Läs exempel 1, 2, 4, 5, Läs exempel Det grundläggande exemplet i detta avsnitt är då nämnaren har skilda och enkla nollställen, som i rutan på s Detta behandlas i ex Om någon faktor i nämnaren saknar reella nollställen måste man göra en annan ansats, som i ex I ex. 7 8 visas vad som händer om någon av faktorerna förekommer flera gånger. Tänk på att den beskrivna tekniken fungerar endast då täljaren är av lägre grad än nämnaren. 6.5 I detta avsnitt behandlas generaliserade integraler. Det är två olika saker man måste tänka på. Dels kan integrationsintervallet vara oändligt, dels kan integranden vara obegränsad i närheten av någon punkt. Man måste då beräkna integralen som ett gränsvärde. Sats 2 3 är viktiga då man vill undersöka integralens konvergens. Dessa satser behövs senare i samband med konvergens av serier. Kap. 7. Tillämpningar av integraler. 7.1 Fig ger en föreställning om varför, rent allmänt, volym är integralen av area (formeln på övre halvan av s. 408). Formeln längst ned på s. 408 behandlar rotation kring x axeln. Cylindriska skal, s. 411, bygger på en annan idé. Fig. 7.9 visar varför formeln på s. 412 gäller. En sammanfattning av olika fall av rotationsvolymer finns på s Det är nog bättre att man lär sig hur dessa formler härleds, i stället för att lära dem utantill. 7.2 Här behandlas andra volymsberäkningar, där metoden är att dela upp kroppen i tunna skivor, vars area man kan bestämma, varefter man summerar dessa, dvs. integrerar arean. 7.3 Båg eller kurvlängd: formlerna mitt på s Figur 7.22 förklarar mekanismen. Area av rotationsyta: se sammanställning på s Återigen rekommenderas att man lär sig härledningen av dessa formler. Kap. 9. Talföljder, serier och potensserier. 9.1 Def. 1 2, räknelagar (den stora rutan på s. 522). Viktiga satser: Sats 1 2. Vissa delar av detta avsnitt behandlas i appendix III, s. A 25. 4
5 9.2 Konvergens av en (oädlig) serie betyder att följden av dess partialsummor konvergerar (def. 3). Den geometriska serien (def. 4) och resultaten om den (s. 529) är ett måste. Ex. 4 skall man känna till: den harmoniska serien är divergent. Sats 4, s. 532, ger en test för divergens: om inte den allmänna termen a n går mot noll så är serien divergent. Observera att omvändningen av denna sats är falsk: den harmoniska serien är divergent, men dess allmänna term går mot noll. 9.3 Positiva serier. Detta är det centrala avsnittet i kapitlet. Det är viktig att förstå att för positiva serier finns bara två möjligheter: seriens summa är ändlig (dvs serien är konvergent) eller oändlig (dvs serien är divergent). Integraltestet, Sats 8, s. 535, är viktig. Fig. 9.4 visar varför det fungerar. Dess konsekvens i Ex. 1, om p serier, är ett måste. I Ex. 2 ges prov på en annan tillämpning av integraltestet. Sats 9, s. 538, och Sats 10, s. 539, ger de viktigaste metoderna för undersökning av konvergensen. Måste kunnas. Ex. 4 6 illustrerar dessa satser. Resten av avsnittet kan hoppas över. 9.4 Absolutkonvergens, def. 5, Sats 13, s. 544, är viktig. Betingat (conditional) konvergens, def. 6, Ex. 1, s Resten av avsnittet ingår inte. 9.5 (t.o.m. s. 555, samt Th. 19) I samband med Taylors formel såg vi exempel på potensserier. Här dyker den geometriska serien upp igen. Sats 17, s. 554, skall man känna till. Där ingår det viktiga begreppet konvergensradie. Den kan beräknas enligt formeln i rutan på s Man skall kunna använda Sats 19, s. 563: Innanför konvergensintevallet får man derivera eller integrera en potensserie termvis. Läs Ex. 5 7, s
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001
INSTITUTIONEN FÖR MATEMATIK Per Sjölin KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 Kursledare: Per Sjölin, rum 3632, Lindstedtsvägen 25, tel 790 7204, pers@math.kth.se.
Planering Matematik II Period 3 VT Räkna själv! Gör detta före räkneövningen P1. 7, 17, 21, 37 P3. 29, 35, 39 P4. 1, 3, 7 P5.
Avsnitt 1, Inledning ( Adams P1,P3,P4, P5) Genomgång och repetition av grundläggande begrepp. Funktion, definitionsmängd, värdemängd. Intervall. Olikheter. Absolutbelopp. Styckvis definierade funktioner.
Teorifrå gor kåp
Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför
Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt
Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,
SF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna
Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.
Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.
TNA003 Analys I för ED, MT, KTS
TNA003 Analys I för ED, MT, KTS Litteraturkommentarer till föreläsningarna VT1 2017 Sixten Nilsson TNA003 FÖ 1: Kap 3.1 3.2 Litteraturkommentarer 3.1 Gränsvärdesidén Skilj på de två typerna av gränsvärden.
5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006.
Institutionen för Matematik, KTH, Olle Stormark. 5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006. Detta är en grundläggande kurs i differential - och integralkalkyl för funktioner av en variabel. Enligt
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim
Matematik 5 Kap 3 Derivator och Integraler
Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med
RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
DERIVATA. = lim. x n 2 h h n. 2
DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). Kursplan SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009. Denna kursplan nås via kursens hemsida /index.html som finns under http://www.math.kth.se/math/gru/2009.2010/sf1625/cmast/
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte.
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. Att läsa matte är en väldigt aktiv process. Det handlar inte om att bara skumma texten. Att läsa matte är att aktivt återskapa och internalisera
Repetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1
TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
Läsanvisningar till kapitel 4 i Naturlig matematik
Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
Funktionsserier och potensserier. som gränsvärdet av partialsummorna s n (x) =
Funktionsserier och potensserier Viktiga exempel på funktionsföljder är funktionsserier. Summan s(x) av f k (x) definieras som gränsvärdet av partialsummorna s n (x) = n f k (x) för varje fixt x I. Serien
Modul 4 Tillämpningar av derivata
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.
Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett
TATA42: Föreläsning 6 Potensserier
TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a
4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.
TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att
Föreläsning 1. X kallas för funktionens definitionsmängd, mängden av funktionens alla värden kallas funktionens värdemängd.
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www.math.uu.se/ rikardo/ envariabelanalys/huvudsidor/index.html Funktioner En funktion f, från mängden
gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal
5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005
KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd
TNA004 Analys II. för ED, KTS, MT. Litteraturkommentarer till föreläsningarna
för ED, KTS, MT till föreläsningarna VT2 2017 TNA004 FÖ 1 Kap 7.1 7.2. Kommentarer 7.1 Plan area Area mellan funktionskurvor. Figurerna och texten på sid. 311 313 är viktigt för förståelsen av hela detta
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). kurspm SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008. Detta är en grundläggande kurs i differential- och integralkalkyl för
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket.
Institutionen för Matematik SF625 Envariabelanalys Läsåret 27-28 Lars Filipsson Modul 5: Integraler Denna modul handlar om integraler. Det slås fast i en precis definition vad som menas med att en funktion
+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891
KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Potensserielösningar Analytiska funktioner Konvergensradie Rot- och
SF1625 Envariabelanalys
Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel
Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018
Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,
LMA222a. Fredrik Lindgren. 17 februari 2014
LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
SF1625 Envariabelanalys
Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:
SF1625 Envariabelanalys
Föreläsning 18 Institutionen för matematik KTH 12 december 2017 Idag Talföljder Serier Jämförelse med integraler (Cauchy s integralkriterium) Andra konvergenskriterier (jämförelsekriterier) Mer i morgon
KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK
KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK ELIN GÖTMARK MATS JOHANSSON INSTITUTIONEN FÖR MATEMATIK OCH MATEMATISK STATISTIK UMEÅ UNIVERSITET Date: 3 augusti 202.
ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Thomas Önskog ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP Kurskod: 1MA013. Kurslitteratur: Robert Adams, Christopher Essex, Calculus : a complete course. Pearson
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
SAMMANFATTNING TATA41 ENVARIABELANALYS 1
SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7
TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga
Om konvergens av serier
Om konvergens av serier Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuteras några av de grundläggande satserna som hjälper oss att avgöra om en serie
TATA42: Föreläsning 5 Serier ( generaliserade summor )
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Matematik 4 Kap 3 Derivator och integraler
Matematik 4 Kap 3 Derivator och integraler Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed.
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Del 2 (funktioner av flera variabler). Omfattning: Kapitel 8.2, 8.3 t.o.m. s 497, 8.4, endast båglängd, 8.5 tom s. 506, 10.1, 10.5,
x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx
TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
SF1625 Envariabelanalys
Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner
Övningsuppgifter. 9 Linjer i planet och rummet Plan i rummet : 32, 33 Övningar4(sida 142) exempel
Detaljplanering: Kurs: Matematik I HF1903, År 2013/14 Period: P1, Rekommenderande uppgifter i boken Matematik för ingenjörer, Rodhe, Sollervall er finns på kursens webbadress : www.sth.kth.se/armin/ar_13_14/hf1903/dirhf1903_13_14.html
Modul 1: Funktioner, Gränsvärde, Kontinuitet
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och
Tentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24 och 24-25 25-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C = (5, 1).
Matematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
Modul 1: Funktioner, Gränsvärde, Kontinuitet
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och
Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,
Förord till läraren. 1. Mer praktisk information
10 Förord till läraren Förord till studenten innehåller praktisk information om bokens uppbyggnad. Det gäller exempel, teknikproblem, bevis, dialoger, rekommenderade övningar, matematiska fortsättningar,
Instuderingsfrågor för Endimensionell analys kurs B1
Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
Tentamen i Envariabelanalys 1
Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,
x 1 1/ maximum
a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter
Kursens Kortfrågor med Svar SF1602 Di. Int.
Kursens Kortfrågor med Svar SF62 Di. Int. Allmänt om kortfrågor: Kortfrågorna är ett viktigt sätt för er att engagera matematiken. De kommer att dyka upp på kontrollskrivningar. Syftet är att ni ska gå
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
Lösningsförslag till TATA42-tentan
Lösningsförslag till TATA-tentan 8-6-.. Då ekvationen är linjär av första ordningen löses den enklast med hjälp av integrerande faktor (I.F.). Skriv först ekvationen på standardform. (+ )y y + y + + y
SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x
Institutionen för matematik, KTH Serguei Shimorin SF6, Differential- och integralkalkyl I, del Tentamen, den 9 mars 9 Lösningsförslag Funktionen y = fx definieras för x >, x som x + x fx = x a Definiera
Planering Analys 1, höstterminen 2011
Nr 1 Matematikcentrum Matematik NF Planering Analys 1, höstterminen 2011 Program Anders Olofsson Kurslitteratur: Adams RA, Essex C, Calculus a complete course, sjunde upplagan, 2010 (A). Gamla tentor delas
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
Approximation av funktioner
Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner
Flervariabelanalys. Undervisning Undervisning sker i form av föreläsningar (39 st) och lektioner (20 st).
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Vårterminen 2012 Flervariabelanalys för F1, KandMa1, KandFy1 och Gylärare Kursen behandlar följande ämnen: 1. Flervariabelanalys. Kursbok är Calculus: a complete
Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,
Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen
Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Lösningsmetodik för FMAF01: Funktionsteori
Lösningsmetodik för FMAF0: Funktionsteori Johannes Larsson, I2 0 mars 204 Allmänt Detta är lösningsmetoder för de vanligaste tentauppgifterna, grupperade efter hur ofta de kommer på tentan och därmed också