KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001
|
|
- Elin Lundqvist
- för 8 år sedan
- Visningar:
Transkript
1 INSTITUTIONEN FÖR MATEMATIK Per Sjölin KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 Kursledare: Per Sjölin, rum 3632, Lindstedtsvägen 25, tel , Kurssekreterare: Rose-Marie Jansson, rum 3527, Lindstedtsvägen 26, tel , Kurslitteratur: Robert A. Adams, Calculus, A Complete Course, Fourth Edition. ISBN: Säljes på THS Bokhandel. Kursinnehåll: Se nedanstående kursplanering. Undervisning: Består av två moment: - ar (72 timmar), där en del av tiden används till att kursinnehållet gås igenom och illustreras med exempel, och en del av tiden används till problemillustration. - Räknestugor (33 timmar), där teknologerna arbetar självständigt och har möjlighet att få handledning. Lappskrivningar och inlämningsuppgifter: I samband med undervisningen anordnas två lappskrivningar (se nedan) och två inlämnings-uppgifter kommer att ges under kursens gång. Godkända lappskrivningar respektive godkända inlämningsuppgifter ger en bonuspoäng vardera på tentamensskrivningen. Examination: Tentamensskrivningen består av uppgifter av problem- och teorikaraktär. Vid det ordinarie tentamenstillfället (preliminärt ) och de två följande tillfällena till omtentamen kan erhållna bonuspoäng tillgodoräknas. De föreslagna uppgifterna är just förslag, teknologerna räknar de tal som de anser sig behöva öva på. Det material som tas upp nedan under rubriken Räknestuga är avsett att studeras under räkne-stugor och under hemarbete. Observera att självstudier är viktigt för inlärning av kursinnehållet. Kapitel P är väsentligen ett repetitionskapitel, och lämnas till stor del till självstudier. Förtrogenhet med detta material är en förutsättning för att kunna tillgodogöra sig resten av kursen. Övningar P.1: 3, 6, 17, 19, 21, 25, 29, 37, 41 P.2: 9, 11, 49 P.3: 3, 7, 19, 29, 47, 49 P.4: 3, 5, 7, 13, 19, 45, 53 P.5: 1, 5, 9, 21, 27, 29 P.6: 5, 9, 15, 17, 21, 23, 27 Må 3/9 för gränsvärden. Ti 4/9 1.2, 1.3: Gränsvärden, aritmetiska lagar och egenskaper Räknestuga
2 1.1 och lösta exempel i Övningar 1.2: 9, 17, 23, 25, 33, 59, 63, 65, : 3, 7, 9, 17, 18, 35, 57 To 6/9 kontinuitet. 1.4: Kontinuitet, egenskaper hos kontinuerliga funktioner. 1.5: Den matematiska definitionen av gränsvärden och Må 10/9 Övningar 1.2: 10, 13, 14, 18, 24, 26, 29, 36, 39, : 4, 6, 8, 11, 13, 14, : 4, 8, 18, : 4, 10, 12, 28 Ti 11/9 Räknestuga Övningar 1.4: 1, 7, 13, 17, : 1, 7, 13, 17, 29 To 13/9 2.1: Lutning, tangent, normal. 2.2: Derivata, höger- och vänsterderivata, differential, allmänna deriveringsregler. Må 17/ : Fortsättning av allmänna deriveringsregler, kedjeregel, derivator för några ofta förekommande funktioner. Ti 18/9 Räknestuga Övningar 2.1: 3, : 5, 11, 27, : 15, 21, 39, : 1, 3, 13, 15, 23, : 5, 23, 31, 33, 43, 47, 51, 5 To 20/9 Övningar 2.1: 4, : 6, 16, 25, 47, ; 16, 22, : 2, 4, 11, 16, 25, 36, : 14, 28, 32, 42, 58 Må 24/9 2.6: Medelvärdessatsen. Ti 25/9 Räknestuga Övningar 2.6: 3, 5, 9, 15 To 27/9 2.8: Derivator av högre ordning. 2.9: Implicit derivering. Må 1/10 Övningar 2.6: 2, 6, 8, : 3, 5, 11, 16, 19, 20, : 4, 10, 12 Ti 2/10 Räknestuga Övningar 2.8: 1, 2, 7, : 7, 15, 25
3 To 4/10 3.1: Inversa funktioner, derivering av inversa funktioner. Må 8/10 3.3: Exponential- och logaritmfunktioner. 3.5 fram till def. 13: Inversa funktioner till trigonometriska funktioner. Ti 9/10 Räknestuga 3.2: Exponential- och logaritmfunktioner. Övningar 3.1: 9, 11, : 5, 7, 27, 28, 29, 30, 31, : 3, 5, 21, 23, 39, : 1, 3, 9, 13, 15, 19, 21 To 11/10 Övningar 3.3: 22, 26, 40, 42, : 2, 6, 14, 16, 20, 22, 26, 34 Må 29/ t.o.m. s. 1101: Homogena linjära differentialekvationer av andra ordningen med konstanta koefficienter. Övningar 17.7: 2, 6, 10, 14 Ti 30/10 Repetition Vi repeterar avsnitt , , 2..8, 2.9, To 1/11 Räknestuga 8-10: Lösta ex. i 17.7, enkel harmonisk rörelse s , övningar 17.7: 1, 3, 7, : Lappskrivning nr 1 som behandlar avsnitt P, , , 2.8, 2.9, , 3.5. Fr 2/ fram till s. 1019: Inhomogena linjära differentialekvationer av andra ordningen med konstanta koefficienter. Må 5/11 4.2: Lokala och globala extremvärden, kritiska punkter, extremvärden till funktioner definierade på ett intervall. Övningar 17.8: 2, 8, 10, 12 Ti 6/ forts. 4.3: Enbart andra derivatans test. Övningar 4.2: 6, 14, 26, 30, 32, 36 To 8/11 Räknestuga 17.8: Ex. 1 och 2 och resonans s Övningar 17.8: 1, 5, 9, : 5, 11, 13, 15, 19, 27, : 27, 31, 33 Fr 9/11 4.7: Linjär approximation. 4.8: Taylors formel, Lagranges restterm, stort Ordo, MacLaurins utveckling av vanliga funktioner. Må 12/11 regel. Övningar 4.3: 26, 28, : Taylors formel med exakt restterm, MacLaurinserier. 4.9: Några tillämpningar av Taylors formel, l'hôspitals
4 Ti 13/11 4.7: 4, 6, 16 area. Övningar 4.8: 2, 6, 8, 10, 20, 22, : Sigmabeteckningen. 5.2: Area. 5.3: Riemannsumma, integralens definition, integral som To 15/11 Räknestuga Övningar 4.7: 3, 5, 15, : 1, 5, 7, 9, 19, : 3, 9, : 1, 3, 5, 13, 17, 23, : 1, 5, 13, 17, 21, : 1, 5, : 5, 9, 11 Fr 16/11 Övningar 9.8: 2, 8, : 2, 4, 6, 8, 10, 12, 14, 18, 20, : 2, 4, 12, 14, 22, : 2, 10, : 2, 10, 12, 14 Må 19/11 5.4: Integrationsregler, medelvärdessatsen. 5.5: Integralkalkylens huvudsats. Övningar 5.4: 25, 29, : 7, 11, 19, 21, 25, 27, 33, 47 Ti 20/11 5.6: Variabelsubstitution. 5.7: Beräkning av area av plana områden. 6.1: Partiell integration. Övningar 5.6: 4, 6, 8, 10, 11, : 2, 4, 6, : 2, 6, 8, 13, 14, 32 To 22/11 Räknestuga Inlämningsuppgift nr 1 lämnas in Övningar 5.4: 3, 7, 13, 23, : 3, 5, 9, 29, 39, 41, : 1, 3, 7, 9, 23, 25, : 3, 5, 11, 13, : 1, 5, 7, 23, 29, 31 Må 26/11 6.2: Inverssubstitution (t.o.m. s. 357). 6.3: Uppdelning i partialbråk, integration av rationella funktioner. Övningar 6.2: 2, 10, 16, 22, : 6, 10, 12, 16, 20 Ti 27/11 Repetition inför Lappskrivning nr 2. To 29/11 Räknestuga : Övningar 6.2: 1, 3, 25, 29, : 5, 9, 11, 21
5 : Lappskrivning nr 2 som behandlar avsnitt 17.7, 17.8, 4.2, 4.3, , , Må 3/12 6.5: Generaliserade integrealer, p-integraler, konvergensundersökning. 7.1: Beräkning av rotationsvolymer. 7.3: Beräkning av båglängd, area av rotationsytor. Övningar 6.5: 2, 4, 8, 10, 24, : 3, 6, 8, 12, 16 Ti 4/12 9.1: Talföljder, monotona talföljder, konvergens. 9.2: Serier, konvergens, geometriska serier. 9.3: Integralkriteriet, p-serier, jämförselsekriteriet (ej s. 537 och Ex. 3). Övningar 7.3: 4, 8, 12, 22, : 2, 18, 24, 26 To 6/12 Räknestuga Inlämningsuppgift nr 2 lämnas in Övningar 6.5: 3, 5, 13, 15, : 1,, 5, 11, : 3, 5, 23, : 1, 19, 21, : 1, 3, 13, : 1, 3, 11, 17, 19, 25 Må 10/12 Appendix III: Den matematiska definitionen av kontinuitet och gränsvärde. Satser om kontinuerliga funktioner. Appendix IV: Riemannintegralen. Övningar 9.4: 4, 6, 8 9.5: 2, 4, 6, 8, 18, 28 On 12/12 Räknestuga Övningar 9.4: 1, 5, : 1, 3, 19, 27 Appendix III: 1, 5, 7 Appendix IV: 1, 7 6
5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006.
Institutionen för Matematik, KTH, Olle Stormark. 5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006. Detta är en grundläggande kurs i differential - och integralkalkyl för funktioner av en variabel. Enligt
5B1107 Differential- och integralkalkyl II, del 2 för F1, 6 poäng, vt 2002.
Institutionen för Matematik,KTH Olle Stormark 5B1107 Differential- och integralkalkyl II, del 2 för F1, 6 poäng, vt 2002. Kurslitteratur: Calculus av Robert A. Adams (fourth edition). Kursen omfattar följande
Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt
Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,
Planering Analys 1, höstterminen 2011
Nr 1 Matematikcentrum Matematik NF Planering Analys 1, höstterminen 2011 Program Anders Olofsson Kurslitteratur: Adams RA, Essex C, Calculus a complete course, sjunde upplagan, 2010 (A). Gamla tentor delas
KURSPLANERING 5B1138 REELL ANALYS II, VT06
KURSPLANERING 5B1138 REELL ANALYS II, VT06 Kursen Reell analys II, 7p, är en mer avancerad alternativkurs till 5B1107 Diff&Int II, 6p. Teori och bevis betonas något mer än i den ordinarie kursen, men god
Planering Matematik II Period 3 VT Räkna själv! Gör detta före räkneövningen P1. 7, 17, 21, 37 P3. 29, 35, 39 P4. 1, 3, 7 P5.
Avsnitt 1, Inledning ( Adams P1,P3,P4, P5) Genomgång och repetition av grundläggande begrepp. Funktion, definitionsmängd, värdemängd. Intervall. Olikheter. Absolutbelopp. Styckvis definierade funktioner.
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). kurspm SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008. Detta är en grundläggande kurs i differential- och integralkalkyl för
Matematik och statistik NV1, 10 poäng
UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 2006 Matematik och statistik NV1, 10 poäng Välkommen till Matematiska institutionen och kursen Matematik och statistik NV1, 10p. Kursen består
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). Kursplan SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009. Denna kursplan nås via kursens hemsida /index.html som finns under http://www.math.kth.se/math/gru/2009.2010/sf1625/cmast/
ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Thomas Önskog ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP Kurskod: 1MA013. Kurslitteratur: Robert Adams, Christopher Essex, Calculus : a complete course. Pearson
Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts.
5B1103, Differential och integralkalkyl II, del 1. LÄSANVISNINGAR TILL R.A. ADAMS, CALCULUS, A COMPLETE COURSE, 4TH ED. OMFATTNING: kapitel 1.1 1.5, Appendix III, 2, 3.1 3.4, 3.5 till def. 13, 17.7 t.o.m.
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
FYSA21 Teori, höstterminen 2013 Naturvetenskapliga tankeverktyg
Nr 1 Matematikcentrum Matematik NF FYSA21 Teori, höstterminen 2013 Naturvetenskapliga tankeverktyg Program 2 september 20 december Föreläsare: Anders Olofsson, rum 520 Matematik NF, Sölvegatan 18, telefon:
SF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
Läsanvisningar Henrik Shahgholian
Institutionen för matematik SF1626 Flervariabelanalys Läsanvisningar Henrik Shahgholian Läsanvisningarna nedan är har tagits fram som hjälpmedel för de studenter som vill helst ha en snabb tillgång till
SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008.
SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. Anders Karlsson, Inst för Matematik, KTH January 22, 2008 Kursinnehåll: Grundläggande kurs i di erential- och integralkalkyl i era variabler.
Kursplan. Matematik A, 30 högskolepoäng Mathematics, Basic Course, 30 Credits. Mål 1(5) Mål för utbildning på grundnivå.
1(5) Denna kursplan är nedlagd eller ersatt av ny kursplan. Kursplan Institutionen för naturvetenskap och teknik Matematik A, 30 högskolepoäng Mathematics, Basic Course, 30 Credits Kurskod: MA1000 Utbildningsområde:
Flervariabelanalys. Undervisning Undervisning sker i form av föreläsningar (39 st) och lektioner (20 st).
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Vårterminen 2012 Flervariabelanalys för F1, KandMa1, KandFy1 och Gylärare Kursen behandlar följande ämnen: 1. Flervariabelanalys. Kursbok är Calculus: a complete
Övningsuppgifter. 9 Linjer i planet och rummet Plan i rummet : 32, 33 Övningar4(sida 142) exempel
Detaljplanering: Kurs: Matematik I HF1903, År 2013/14 Period: P1, Rekommenderande uppgifter i boken Matematik för ingenjörer, Rodhe, Sollervall er finns på kursens webbadress : www.sth.kth.se/armin/ar_13_14/hf1903/dirhf1903_13_14.html
TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier
Kurs-PM MATEMATIK 2 (7.5 hp) P4, HF1000, ( tidigare 6H3011) Kursansvarig: Armin Halilovic, http://www.sth.kth.se/armin E-Mail armin@sth.kth.se rum 5046, Campus Haninge KURSFORDRINGAR: Examination: Godkända
SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009.
SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009. Kurt Johansson, Inst för Matematik, KTH 2 mars 2009 Kursinnehåll: Grundläggande kurs i differential- och integralkalkyl i flera variabler.
Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp
Statistiska institutionen VT2011 Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp MOMENTETS INNEHÅLL Momentet ger studenten kunskap om ett antal olika statistiska modeller och hur
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med
SF1626 Flervariabelanalys, 7.5 hp, för M1 vt 2009.
KTH Matematik, Jockum Aniansson, efter Olle Stormark. KursPM SF1626 Flervariabelanalys, 7.5 hp, för M1 vt 2009. Flervariabelanalysen är en rättfram generalisering av envariabelsmatematiken till funktioner
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012.
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare
Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016
Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016 Kursansvarig/Examinator: Staffan Lundberg, TVM Telefon: 0920-49 18 69 Rum: E882 E-post: Lärare i Skellefteå: Eva Lövf, tfn. 0910-58 53
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013.
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare
Förord till läraren. 1. Mer praktisk information
10 Förord till läraren Förord till studenten innehåller praktisk information om bokens uppbyggnad. Det gäller exempel, teknikproblem, bevis, dialoger, rekommenderade övningar, matematiska fortsättningar,
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte.
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. Att läsa matte är en väldigt aktiv process. Det handlar inte om att bara skumma texten. Att läsa matte är att aktivt återskapa och internalisera
Kursinformation och studiehandledning, Matematik III - Differentialekvationer, komplexa tal och transformteori, Lp III 2016.
Institutionen för teknikvetenskap och matematik Kursinformation och studiehandledning, Matematik III - Differentialekvationer, komplexa tal och transformteori, Lp III 2016. Kursansvar: Staffan Lundberg,
Matematik 2 för media, hösten 2001
Matematik 2 för media, hösten 2001 Välkomna till Matematik 2 kursen! Lärare Föreläsare Tommy Ekola tel. 790 66 59 epost ekola@math.kth.se rum 3734, plan 7, matematikinstitutionen Assistenter Mattias Andersson
Förkunskaper Studenten skall för att kunna tillgodogöra sig kursen ha förkunskaper motsvarande Matematik A, B och C i gymnasieskolan.
5B1134 Matematik och modeller, 4 poäng, ht 2004 Kurs-PM 2004-08-28 Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C till de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a, b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
5B B1134 Matematik och modeller, 4 poäng, ht 2006 Kurs-PM
2006-08-30 5B1134 Matematik och modeller, 4 poäng, ht 2006 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket.
Institutionen för Matematik SF625 Envariabelanalys Läsåret 27-28 Lars Filipsson Modul 5: Integraler Denna modul handlar om integraler. Det slås fast i en precis definition vad som menas med att en funktion
TNA003 Analys I för ED, MT, KTS
TNA003 Analys I för ED, MT, KTS Litteraturkommentarer till föreläsningarna VT1 2017 Sixten Nilsson TNA003 FÖ 1: Kap 3.1 3.2 Litteraturkommentarer 3.1 Gränsvärdesidén Skilj på de två typerna av gränsvärden.
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
SF1620 Matematik och modeller, 6 högskolepoäng, ht 2007
2007-09-03 SF1620 Matematik och modeller, 6 högskolepoäng, ht 2007 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,
5B B1134 Matematik och modeller, 4 poäng, ht 2005 Kurs-PM
2005-08-31 5B1134 Matematik och modeller, 4 poäng, ht 2005 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle
Humanistiska och teologiska fakulteterna ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd
Examination: En skriftlig tentamen den XX mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare.
Kursprogram till Linjär algebra II, SF1604, för D1, vt10. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (mobil: 0730 547 891) e-post: olohed@math.kth.se Övningar: grupp
SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht Kurs-PM SF1658
SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht 2008 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00.
Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (hem: 08-716 80 34) e-post: olohed@math.kth.se Mottagningstid:
Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp
Statistiska institutionen HT 2014 Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp Kursen består av fyra moment: 1. Statistisk teori med tillämpningar I, tentamen, 6 hp 2. Inlämningsuppgift
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Hållfasthetslära Z2, MME175 lp 3, 2005
Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling
Endimensionell analys B2 BiLV
- Hem Hem Om kursen Kurs URL (för B2-delen) http://ctr.maths.lu.se/matematiklth/courses Kursansvarig: Mario Natiello (http://www.maths.lu.se/staff/mario-natiello/) Övningsassistenter: Mario Natiello (Bi),
Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1
Välkommen till MVE340 Matematik B för Sjöingenjörer Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 35 57 Kontor: L3037 i matematikhuset, Johanneberg Kursinnehåll i stora drag Funktioner
+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform.
Kap 4.8 4.9. Taylors formel, Lagranges restterm, stort ordo, entydigheten, approimationer, uppskattning av felet, Maclaurins formel, l'hospitals regel. 60. (A) Bestäm MacLaurinutvecklingarna av ordning
TATA68 Matematisk grundkurs, 6hp Kurs-PM ht 2018
TATA68 Matematisk grundkurs, 6hp Kurs-PM ht 2018 Göran Forsling All kursinformation finns också kurssidan i Lisam Innehåll 1 Kursinnehåll 2 1.1 Reella och komplexa tal.............................. 2 1.2
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng
1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
BML131, Matematik I för tekniskt/naturvetenskapligt basår
BML131 ht 2013 1 BML131, Matematik I för tekniskt/naturvetenskapligt basår Syfte och organisation Matematiken på basåret läses i två obligatoriska kurser; under första halvan av hösten BML131 (Matematik
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2019
TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2019 Fredrik Andersson Mikael Langer Johan Thim All kursinformation finns också på courses.mai.liu.se/gu/tatm79 Innehåll 1 Kursinnehåll 2 1.1 Reella och komplexa
Envariabelanalys 2. Programkurs 6 hp Calculus in One Variable 2 TATA42 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(9) Envariabelanalys 2 Programkurs 6 hp Calculus in One Variable 2 TATA42 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum 2(9) Huvudområde
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
TNA004 Analys II, 6 hp för ED, KTS och MT Kursinformation VT Sixten Nilsson,
TNA004 Analys II, 6 hp för ED, KTS och MT Kursinformation VT-017 Sixten Nilsson, sixten.nilsson@liu.se 1. Mål och innehåll Se studiehandboken. Kurslitteratur Forsling-Neymark: Matematisk analys, en variabel,
TATA79 Inledande matematisk analys (6hp)
Inledande matematisk analys (6hp) Kursinformation HT 2016 Examinator: David Rule Innehåll 1 Kursinnehåll 2 1.1 Grundlägande koncept och verktyg........................ 2 1.2 Geometri och reela tal...............................
91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015
91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015 Johan Thim All kursinformation finns också på www.liu.se/utbildning/program/amneslarare-gy/student/termin-2/matematik-91ma11 www.liu.se/utbildning/program/amneslarare7-9/student/termin-2/matematik-91ma17
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed.
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Del 2 (funktioner av flera variabler). Omfattning: Kapitel 8.2, 8.3 t.o.m. s 497, 8.4, endast båglängd, 8.5 tom s. 506, 10.1, 10.5,
Teorifrå gor kåp
Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför
Matematik 5 Kap 3 Derivator och Integraler
Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
Kursinformation, TNIU19 Matematisk grundkurs fo r byggnadsingenjo rer, 6 hp
Kursinformation, TNIU19 Matematisk grundkurs fo r byggnadsingenjo rer, 6 hp Grundläggande matematik för ingenjörsstudenter vid Byggnadsteknisk utbildning en förberedande matematikkurs inför kursen Envariabelanalys
KURSPLAN. HÖGSKOLAN I KALMAR Naturvetenskapliga institutionen. Fastställd av Nämnden för lärarutbildning och utbildningsvetenskap
KURSPLAN HÖGSKOLAN I KALMAR Naturvetenskapliga institutionen KURS MA200L Matematik och logiskt tänkande II 31-60 högskolepoäng Mathematics and mathematical thought processes II 31-60 higher education credits
ENDIMENSIONELL ANALYS FÖR C, D OCH BME HT 2013, DELKURS A2, 5 HP
LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR C, D OCH BME HT 2013, DELKURS A2, 5 HP Kurskod: FMAA01 Kurschef: Magnus Aspenberg, rum 343 Matematiska Institutionen.
Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida.
Kursinformation för Komplex analys, 3p, ht 2006. Civ.ing. (Teknisk Fysik) Ingår som ett moment i kursen Fysikens matematiska metoder, 10p. Ulf Backlund Kursstart Kursen startar tisdagen den 10 oktober
Förord. Stockholm i juni Luciano Triguero
Förord Behovet av ett praktiskt inriktat läromedel i matematik med möjlighet att använda datorbaserad beräkningsteknik har varit ledstjärnan vid tillkomsten av denna bok. Boken kombinerar matematikens
Beskrivning av och preliminära läsanvisningar till Fortsättningskurs i statistik, moment 1, Statistisk Teori, 10 poäng.
STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-08-29 MC Beskrivning av och preliminära läsanvisningar till Fortsättningskurs i statistik, moment 1, Statistisk Teori, 10 poäng. KURSBESKRIVNING
Kursinformation och lektionsplanering BML402
Kursinformation och lektionsplanering Matematik specialisering för basår, 7 hp. Syfte och organisation Kursen är valbar och bygger vidare på tidigare matematikkurser på basåret. Syftet är att ge en god
Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp
Statistiska institutionen VT 2015 Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp Kursen består av fyra moment: 1. Statistisk teori med tillämpningar I, tentamen, 6 hp 2. Inlämningsuppgift
SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng)
Kursöversikt numpbio, 2013. 1 Beatrice Frock KTH Matematik, 130620 SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering för Bio3, 9 hp (högskolepoäng) Kursprogram 6 Design i Matlab
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna
Kursbeskrivning för statistisk teori med tillämpningar I + II, 15 hp
Statistiska institutionen HT 2011 Kursbeskrivning för statistisk teori med tillämpningar I + II, 15 hp Kursen består av två moment: 1. Statistisk teori med tillämpningar I 2. Statistisk teori med tillämpningar
Kursinformation och lektionsplanering BML402
Kursinformation och lektionsplanering Matematik specialisering för basår, 7 hp. Syfte och organisation Kursen är valbar och bygger vidare på tidigare matematikkurser på basåret. Syftet är att ge en god
Planering för kurs C i Matematik
Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.
Kursbeskrivning för statistisk teori med tillämpningar I + II, 15 hp
Statistiska institutionen VT 2012 Kursbeskrivning för statistisk teori med tillämpningar I + II, 15 hp Kursen består av två moment: 1. Statistisk teori med tillämpningar I 2. Statistisk teori med tillämpningar
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Upphämtningskurs i matematik
Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna
Julia Viro KURSBESKRIVNING
Analys MN2 Uppsala universitet Matematiska institutionen Kursbeskrivning och läsanvisningar Julia Viro 2007-01-22 KURSBESKRIVNING Lärare: Julia Viro (julia@math.uu.se), föreläsningar och lektioner för
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
Kursinformation och studiehandledning, M0043M Matematik II Integralkalkyl och linjär algebra, Lp II 2016.
Kursinformation och studiehandledning, M0043M Matematik II Integralkalkyl och linjär algebra, Lp II 2016. Examinator, kursansvarig: Staffan Lundberg. Rum: E 882. E-post: lund@ltu.se Telefon: 0920-49 18
TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.
TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella
Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
Matematik 4 Kap 3 Derivator och integraler
Matematik 4 Kap 3 Derivator och integraler Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande
Andelar och procent Fractions and Percentage
Sida 1 av 20 Kursplan Uttagen: Inrättad: 2010-09-03 Andelar och procent Fractions and Percentage Högskolepoäng: 1.0 Kurskod: 5MA098 Ansvarig enhet: Matematik och Matematisk statistik SCB-ämne: Matematik
Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.
Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.
RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.
Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella
TNA004 Analys II. för ED, KTS, MT. Litteraturkommentarer till föreläsningarna
för ED, KTS, MT till föreläsningarna VT2 2017 TNA004 FÖ 1 Kap 7.1 7.2. Kommentarer 7.1 Plan area Area mellan funktionskurvor. Figurerna och texten på sid. 311 313 är viktigt för förståelsen av hela detta
Repetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
TNA003 Analys I, 6 hp för ED, KTS, MT Kursinformation VT Kursansvarig: Sixten Nilsson,
TNA003 Analys I, 6 hp för ED, KTS, MT Kursinformation VT1-2017 Kursansvarig: Sixten Nilsson, sixten.nilsson@liu.se 1. Mål och innehåll Se studiehandboken 2. Kurslitteratur Forsling-Neymark Matematisk analys
Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018
Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,