Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Storlek: px
Starta visningen från sidan:

Download "Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning"

Transkript

1 Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden

2 Standardutvecklingar Vid beräkningar där man inte behöver någon exakt uppskattning av resttermen skriver man resttermen på formen B(x)x n, där B(x) är en begränsad funktion för x nära 0. När man Maclaurinutvecklar flera funktioner får man resttermer B 1 (x)x n, B 2 (x)x m osv. För att slippa hålla reda på olika B i, brukar man beteckna B(x)x n med O(x n ). Detta uttalas stort ordo av x n då x 0 och betyder att den term man avser är av storleksordningen x n för x i en omgivning av 0. Mer exakt betyder f (x) = O(x n ) att f (x)/x n C för en konstant C och alla x 0 som ligger i en omgivning av 0. Följande räkneregler gäller: O(x n ) O(x m ) = O(x n+m ) och om n m, så är O(x n ) ± O(x m ) = O(x n ). Detta är lätt att se: Om f (x) = O(x n ), g(x) = O(x m ), så är uttrycket f (x) x n g(x) x m = f (x)g(x) x n+m begränsat

3 f (x) ± g(x) och om n m, så är begränsat (eftersom x n x m för x nära 0, så g(x)/x n g(x)/x m ). Nedan kommer en sammanställning av de Maclaurinutvecklingar vi härledde förra gången: x n e x = 1 + x + x 2 2! + x 3 3! + + x n n! + O(x n+1 ) ln(1 + x) = x x x x n ( 1)n 1 n + O(x n+1 ) sin x = x x 3 3! + x 5 5! + x 2n 1 ( 1)n 1 (2n 1)! + O(x 2n+1 ) cos x = 1 x 2 2! + x 4 2n x + ( 1)n 4! (2n)! + O(x 2n+2 ) arctan x = x x x 5 2n 1 x + ( 1)n 1 5 2n 1 + O(x 2n+1 )

4 Och här samma sammanställning med summationstecken: n e x x k = k! + O(x n+1 ) ln(1 + x) = k=0 n ( 1) k 1 x k k=1 k + O(x n+1 ) n sin x = ( 1) k 1 x 2k 1 (2k 1)! + O(x 2n+1 ) k=1 n cos x = ( 1) k x 2k (2k)! + O(x 2n+2 ) arctan x = k=0 n ( 1) k 1 x 2k 1 2k 1 + O(x 2n+1 ) k=1 Vi noterar att sin x och arctan x är udda funktioner och utvecklingen innehåller bara uddagradstermer medan cos x är jämn och utvecklingen innehåller bara termer av jämn grad.

5 Det här är ingen slump. Vi erinrar oss om att en funktion kallas udda om f ( x) = f (x) för alla x och jämn om f ( x) = f (x) för alla x. Om f är udda, så gäller f ( x) = f (x) även för x = 0. Alltså är f (0) = f (0), dvs. f (0) = 0. Derivatan av f ( x) är lika med f ( x) (den inre derivatan, derivatan av x, är 1). Det följer att derivatan av en udda funktion är jämn: deriverar vi f ( x) = f (x), får vi f ( x) = f (x), dvs. f ( x) = f (x). På samma sätt får vi att derivatan av en jämn funktion är udda: deriverar vi f ( x) = f (x), får vi f ( x) = f (x), dvs. f ( x) = f (x). Så Maclaurinutvecklar vi en jämn funktion, är alla dess derivator av udda ordning udda, och därför är de lika med 0 då x = 0. Alltså blir det inga uddagradstermer. För en udda funktion är det tvärtom: alla derivator av jämn ordning är udda, därför blir det inga termer av jämn grad.

6 Entydighet Sats (entydighet av Maclaurinutvecklingar). Låt f vara n + 1 gånger kontinuerligt deriverbar i en omgivning av 0. Om f (x) = a 0 + a 1 x + a 2 x a n x n + O(x n+1 ), så är a 0 = f (0), a 1 = f (0), a 2 = f (0)/2!,..., a n = f (n) (0)/n!, dvs. a 0 + a 1 x + a 2 x a n x n är Maclaurinpolynomet för f. Bevis (kan hoppas över). Maclaurins formel ger a 0 + a 1 x + a 2 x a n x n + O(x n+1 ) = f (x) = f (0) + f (0)x + f (0) x f (n) (0) x n + O(x n+1 ). 2! n! Låter vi x 0, får vi a 0 = f (0). Nu kan vi ta bort dessa termer från vänster- och högerledet. Dividerar vi med x, får vi a 1 + a 2 x + + a n x n 1 + O(x n ) = f (0) + f (0) 2! x + + f (n) (0) x n 1 + O(x n ). n!

7 Igen, låter vi x 0, får vi a 1 = f (0). Så fortsätter vi och i sista steget får vi a n + O(x) = f (n) (0) n! Två viktiga konsekvenser: + O(x). Detta ger a n = f (n) (0). n! Låt n vara givet. Maclaurinpolynomet av grad n är det enda polynom sådant att resttermen är O(x n+1 ). För alla andra polynom kommer resttermen vara av storleksordningen O(x m+1 ), m < n. Med andra ord, Maclaurinpolynomet ger den bästa approximationen för x nära 0. Om f (x) = p n (x) + O(x n+1 ) (p n polynom av grad n), så måste p n vara Maclaurinpolynomet. Det här har vi redan utnyttjat vid utvecklingen av arctan x. Vi har ju inte beräknat derivatorna utan fått utvecklingen på ett annat sätt. Det är först med satsen ovan som vi med säkerhet kan säga att detta var just Maclaurinutvecklingen.

8 Numeriska beräkningar Förra gången har vi beräknat närmevärden för e och e 1/10. Nedan kommer några exempel till. Eftersom vi vill ha ett närmevärde, räcker det inte med resttermen på ordo-form utan vi måste kunna göra en rigorös uppskattning av felet. Exempel. För sin x är resttermen R 2n+1 (x) = ( 1) n x 2n+1 cos θx (2n + 1)!. Så R 2n+1 (x) x 2n+1 /(2n + 1)!. Approximerar vi sin 0, 1 med 0, 1 (dvs. tar x = 0, 1 och n = 1), blir felets absolutbelopp x 3 /3! = 0, 1 3 /6, en rätt bra approximation. Tar vi n = 2, får vi sin 0, 1 0, 1 0, 1 3 /6, och felets absolutbelopp blir 0, 1 5 /5! < 10 7.

9 För ln(1 + x) är resttermen R n+1 (x) = ( 1) n (1 + θx) n+1 x n+1 n + 1. Om x 0, är R n+1 (x) x n+1 n + 1. Tar vi n = 1, x = 0, 1, får vi ln 1, 1 0, 1 och felets absolutbelopp är 0, 1 2 /2 = , dvs. vi får 2 korrekta decimaler. Tar vi i stället x = 1 och vill ha 2 korrekta decimaler (dvs. R n+1 (1) 1/(n + 1) 1/200), måste vi ta n + 1 = 200, alltså nästan 200 termer. Exempel. Vi vill beräkna ett närmevärde till 5. Eftersom 4 = 2, ligger det nära till hands att antingen Taylorutveckla f (x) = x kring punkten a = 4 eller Maclaurinutveckla f (x) = 4 + x. Vi väljer det senare och vi tar n = 2.

10 Låt f (x) = (4 + x) 1/2. Då är f (x) = 1 2 (4 + x) 1/2, f (x) = 1 4 (4 + x) 3/2, f (x) = 3 8 (4 + x) 5/2. Så (4 + x) 1/2 = f (0) + f (0)x + f (0) 2 x 2 + f (θx) x 3 = x 1 64 x (4 + θx) x 3. 5/2 Sätter vi x = 1 och utnyttjar att (4 + θ) 5/2 4 5/2, får vi /4 1/64 med ett fel R3 (1) 1/ sin x Exempel. Beräkna ett närmevärde till dx. 0 x Vi approximerar sin x med x x 3 /6 och får 1 x x 3 /6 1 dx = (1 x 2 /6) dx = x Absolutbeloppet för felet i sinus-termen är x 5 /5! = x 5 /120. Så felet vi begår vi integrationen är till beloppet 1 x dx =

11 Beräkning av gränsvärden För att beräkna gränsvärden räcker det med att ha resttermen på ordo-form. Metoden förklaras nedan med ett enkelt exempel: sin x x Exempel. Beräkna gränsvärdet lim. x 0 x 3 sin x x = (x x 3 /6 + O(x 5 )) x = x 3 /6 + O(x 5 ) = x 3 x 3 x 3 1/6 + O(x 2 ) 1/6 då x 0. Så gränsvärdet är 1/6. Hur många termer i Maclaurinutvecklingen bör man ta? Generellt gäller att tar man för många termer, så blir det inte fel men man får kanske räkna mer än nödvändigt. Tar man för få termer, så går det inte att beräkna gränsvärdet. I exemplet ovan, om vi tar sin x = x + O(x 3 ), ser räkningarna ut på följande sätt: sin x x x 3 = (x + O(x 3 )) x x 3 = O(x 3 ) x 3.

12 Det enda vi kan säga om högerledet är att det är begränsat för x nära 0. Gränsvärdet kan vara vilket tal som helst (inklusive 0), men här kan vi inte ens avgöra om det finns något gränsvärde. Här följer två exempel till.

13 Exempel. Beräkna gränsvärdet lim x 0 ln(1 + x 2 ) x 2 x sin 2x 2x 2. ln(1 + t) = t t 2 /2 + O(t 3 ). Ersätter vi t med x 2, får vi ln(1 + x 2 ) = x 2 x 4 /2 + O(x 6 ) och ln(1 + x 2 ) x 2 = x 4 /2 + O(x 6 ). Vi ser att vi tog lagom många termer eftersom vi har beräknat lägstagradstermen i täljaren exakt. Tar vi en term mindre i utvecklingen av ln(1 + t), får vi ln(1 + x 2 ) = x 2 + O(x 4 ) och ln(1 + x 2 ) x 2 = O(x 4 ), dvs. vi har ingen kontroll över lägstagradstermen i täljaren. sin t = t t 3 /6 + O(t 5 ). Sätter vi t = 2x, får vi sin 2x = 2x (2x) 3 /6 + O(x 5 ) och x sin 2x 2x 2 = 2x 2 4x 4 /3+O(x 6 ) 2x 2 = 4x 4 /3+O(x 6 ). Nu kan vi beräkna gränsvärdet: ln(1 + x 2 ) x 2 = x sin 2x 2x 2 x 4 /2 + O(x 6 ) 4x 4 /3 + O(x 6 ) = 1/2 + O(x 2 ) 4/3 + O(x 2 ) 1/2 4/3 = 3 8.

14 ( 1 Exempel. Beräkna gränsvärdet lim x 0 x 1 ) 2 sin 2. x Här ser vi att både 1/x 2 och 1/ sin 2 x går mot då x 0. Vi börjar ( med en omskrivning: 1 lim x 0 x 1 ) sin 2 x x 2 2 sin 2 = lim x x 0 x 2 sin 2 x. Nu kan vi Maclaurinutveckla och vi får: sin 2 x x 2 = (x x 3 /6 + O(x 5 )) 2 x 2 = x 2 x 4 /3 + O(x 6 ) x 2 = x 4 /3 + O(x 6 ) x 2 sin 2 x = x 2 (x + O(x 3 )) 2 = x 2 (x 2 + O(x 4 )) = x 4 + O(x 6 ) sin 2 x x 2 x 2 sin 2 x = x 4 /3 + O(x 6 ) x 4 + O(x 6 ) Det sökta gränsvärdet är lika med 1 3. = 1/3 + O(x 2 ) 1 + O(x 2 ) 1 3.

Dagens ämnen. Entydighet hos Taylor- och Maclaurinpolynom

Dagens ämnen. Entydighet hos Taylor- och Maclaurinpolynom Dagens ämnen 1 / 10 Dagens ämnen Entydighet hos Taylor- och Maclaurinpolynom 1 / 10 Dagens ämnen Entydighet hos Taylor- och Maclaurinpolynom Konsekvenser av entydigheten 1 / 10 Dagens ämnen Entydighet

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

Envariabelanalys 2, Föreläsning 4

Envariabelanalys 2, Föreläsning 4 Envariabelanalys 2, Föreläsning 4 Tomas Sjödin Linköpings Universitet Repetition: Taylors sats Sats Antag att f (x) är denierad och har kontinuerliga derivator upp till och med ordning n + 1 i någon omgivning

Läs mer

Envariabelanalys 5B1147 MATLAB-laboration Derivator

Envariabelanalys 5B1147 MATLAB-laboration Derivator Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

Till dagarna och finns ett appendix som innehåller ytterligare förklaringar, kommentarer och ett antal lösta exempel

Till dagarna och finns ett appendix som innehåller ytterligare förklaringar, kommentarer och ett antal lösta exempel Till dagarna 8-2 och 23-25 finns ett appendix som innehåller ytterligare förklaringar, kommentarer och ett antal lösta exempel Dag 5 Nu tillämpas satserna om sambandet mellan derivatan och funktionens

Läs mer

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform.

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform. Kap 4.8 4.9. Taylors formel, Lagranges restterm, stort ordo, entydigheten, approimationer, uppskattning av felet, Maclaurins formel, l'hospitals regel. 60. (A) Bestäm MacLaurinutvecklingarna av ordning

Läs mer

TATA42: Föreläsning 3 Restterm på Lagranges form

TATA42: Föreläsning 3 Restterm på Lagranges form TATA4: Föreläsning 3 Restterm på Lagranges form Johan Thim 9 mars 9 Lagranges form för resttermen Vi har tidigare använt resttermen på ordo-form med goda resultat. Oftast i samband med gränsvärden, extrempunktsundersökningar

Läs mer

1 Föreläsning 12, Taylors formel, och att approximera en funktion med ett polynom

1 Föreläsning 12, Taylors formel, och att approximera en funktion med ett polynom red Föreläsning, Taylors formel, och att approximera en funktion med ett polynom. Taylorpolynom. Fakultet 0! =, läses noll-fakultet.! =. Vidare är! = = och 3! = 3 =. Allmänt fˆr n =,,,..., n! =... n n.

Läs mer

I punkten x = 1 fås speciellt. Taylorpolynomet blir. f(x) = f(a) + f (a)(x a) + f (a)

I punkten x = 1 fås speciellt. Taylorpolynomet blir. f(x) = f(a) + f (a)(x a) + f (a) Dag 7. Taylors formel 4.8.7 Bestäm Taylorpolynomet av grad n till kring punkten =. + Rekommenderade uppgifter 4.8. Bestäm Taylorpolynomet till cos av grad 3 kring punkten = π/4. Taylors formel säger att

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 11-12 Institutionen för matematik KTH 21-23 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.

Läs mer

M0038M Differentialkalkyl, Lekt 17, H15

M0038M Differentialkalkyl, Lekt 17, H15 M0038M Differentialkalkyl, Lekt 17, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 38 Repetition Lekt 16 Uppskatta (8.2) 1/3 genom att använda differentialer. Svara på bråkform.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) = SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

L HOSPITALS REGEL OCH MACLAURINSERIER.

L HOSPITALS REGEL OCH MACLAURINSERIER. L HOSPITALS REGEL OCH MACLAURINSERIER Läs avsnitten 73 och 8-82 Lös övningarna 78-75, 82, 84a,b, 85a,c, 89, 80 samt 8 Avsnitt 73 L Hospitals regel an ibland vara till en viss nytta, men de flesta gränsvärden

Läs mer

Lösningsförslag envariabelanalys

Lösningsförslag envariabelanalys Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd

Läs mer

Meningslöst nonsens. December 14, 2014

Meningslöst nonsens. December 14, 2014 December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:

Läs mer

Lösningsförslag till Tentamen i SF1602 för CFATE 1 den 20 december 2008 kl 8-13

Lösningsförslag till Tentamen i SF1602 för CFATE 1 den 20 december 2008 kl 8-13 KTH Matematik Examinator: Lars Filipsson Lösningsförslag till Tentamen i SF60 för CFATE den 0 december 008 kl 8-3 Preliminära betygsgränser: A - 8 poäng varav minst 8 VG-poäng, B - 5 poäng varav minst

Läs mer

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf. TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att

Läs mer

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler

Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p) Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn

Läs mer

Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket.

Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket. Institutionen för Matematik SF625 Envariabelanalys Läsåret 27-28 Lars Filipsson Modul 5: Integraler Denna modul handlar om integraler. Det slås fast i en precis definition vad som menas med att en funktion

Läs mer

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014 SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Tentamen SF e Januari 2016

Tentamen SF e Januari 2016 Tentamen SF6 8e Januari 6 Hjälpmedel: Papper, penna. poäng per uppgift totalt poäng. Betg E är garanterat vid 6 poäng, betg D vid poäng, betg vid C poäng, betg B vid 8 poäng och betg A vid poäng. För de

Läs mer

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013 SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

TAYLORS FORMEL VECKA 4

TAYLORS FORMEL VECKA 4 TAYLORS FORMEL VECKA 4 David Heintz, 20 november 2002 Innehåll 1 1 2 Uppgift 29.7 3 3 Uppgift 31.9 4 1 Av de elementära funktionerna är det polynomen som har den enklaste strukturen. Om f är ett givet

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi

Läs mer

Kapitel 5: Primitiva funktioner

Kapitel 5: Primitiva funktioner Kapitel 5: Primitiva funktioner c 005 Eric Järpe Högskolan i Halmstad Primitiva funktioner är motsatsen till derivata. Att integrera är motsatsen till att derivera. Definition F är primitiva funktion till

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Instuderingsfrågor i Funktionsteori

Instuderingsfrågor i Funktionsteori Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du

Läs mer

ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.

ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A/B 5 6 5 kl 8 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.. a) Bestäm Maclaurinpolynomet

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Euler-Mac Laurins summationsformel och Bernoulliska polynom

Euler-Mac Laurins summationsformel och Bernoulliska polynom 46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 TM-Matematik Mikael Forsberg ovntenta Envariabelanalys ma3a Skrivtid: ::. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa på de uppgifter som kräver lösning. Frågorna till 6 ska

Läs mer

Ledtrådar till lektionsuppgifter

Ledtrådar till lektionsuppgifter Ledtrådar till lektionsuppgifter llmänna råd vid lösning av lektionsuppgifter: Försök inledningsvis att lösa uppgiften på egen hand, genom att omsätta innehållet i den tillhörande föreläsningen samt innehållet

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Lösningsförslag till TATA42-tentan

Lösningsförslag till TATA42-tentan Lösningsförslag till TATA-tentan 8-6-.. Då ekvationen är linjär av första ordningen löses den enklast med hjälp av integrerande faktor (I.F.). Skriv först ekvationen på standardform. (+ )y y + y + + y

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

8.4. Integration av trigonometriska uttryck

8.4. Integration av trigonometriska uttryck 68 8 PRIMITIVA FUNKTIONER 8.4. Integration av trigonometriska uttryck Exempel 8.. Bestäm sin 3 x + cos x dx. Trigonometriska ettan tillsammans med ett variabelbyte ger sin 3 x cos + cos x dx = x ( cos

Läs mer

MA2001 Envariabelanalys

MA2001 Envariabelanalys MA2001 Envariabelanalys Något om derivator del 1 Mikael Hindgren 11 november 2018 Derivatans definition Exempel 1 s-t-graf för ett föremål i rörelse. s(0) = 0. s s = v t Hastigeten konstant: Rät linje

Läs mer

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för istanskursen Matematik A - analyselen vi Uppsala universitet höstterminen 2006. 1. Derivata I grunläggane analys

Läs mer

1 Primitiva funktioner

1 Primitiva funktioner Primitiva funktioner Definition. F ( är en primitiv funktion till f( om F ( f(. Antag att vi har hittat en primitiv funktion F ( till f(. Finnsdetflerprimitivafunktionerochvilken form har de i så fall?

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1)

Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1) Förberedelser inför lektion 1 (första övningen läsvecka 1) Läs kapitel 0.10.3. Mycket av detta är nog känt sedan tidigare. Om du känner dig osäker på något, läs detta nogrannare. Kapitel 0.6 behöver inte

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.06.5 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6

Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6 Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid: HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

Några viktiga satser om deriverbara funktioner.

Några viktiga satser om deriverbara funktioner. Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma

Läs mer

III. Analys av rationella funktioner

III. Analys av rationella funktioner Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A

SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Konvergens för iterativa metoder

Konvergens för iterativa metoder Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

Teorifrå gor kåp

Teorifrå gor kåp Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim 0. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer