FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06

Storlek: px
Starta visningen från sidan:

Download "FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06"

Transkript

1 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för istanskursen Matematik A - analyselen vi Uppsala universitet höstterminen Derivata I grunläggane analys pratar man i första han om två begrepp: erivata och integral. Nu har vi kommit fram till et första av em Definition av erivata. Definition 1. Derivatan av en funktion f är en funktion f efiniera av f f(x + h) f(x) (x) = lim, h 0 h för alla x är gränsväret finns. Om f (x) finns för något x säger vi att f är eriverbar i x. Alternativt kan erivatan uttryckas som f (x 0 ) = lim x x0 f(x) f(x 0 ) x x 0, Om f inte är eriverbar i x (et vill säga om gränsväret ovan inte finns) säger vi att x är en singulär punkt. Definition 2. Funktionen f är eriverbar i intervallet I om f (x) existerar för varje x I. Geometriskt kan man tolka erivatan som lutningskoefficienten för tangenten till kurvan y = f(x) i punkten x 0. Mer exakt: tangent till y = f(x) i x 0 har ekvationen y = f(x 0 ) + f (x 0 )(x x 0 ). Fysikaliskt tolkar man erivatan som ett mått på föränringshastigheten hos storheten f(x). Det finns många olika sätt att beteckna erivatan av en funktion: f (x) = Df(x) = x f(x) = y x = y = D x y. 1

2 2 JONAS ELIASSON 1.2. Derivatan av några enkla funktioner. Här följer erivatan av några enkla funktioner. f(x) = c (konstant) f (x) = 0 f(x) = x f (x) = 1 f(x) = x 2 f (x) = 2x f(x) = 1 x f (x) = 1 (x 0) x2 f(x) = x f (x) = 1 2 x (x > 0) f(x) = x r f (x) = rx r 1 (x r 1 reellt tal) f(x) = x f (x) = { 1 x > 0 1 x < Deriverbara funktioner är kontinuerliga. Sats 1. Om funktionen f är eriverbar i punkten x 0 så är f kontinuerlig i x 0. Bevis. Eftersom f är eriverbar i x 0 så finns gränsväret Vi skriver om f(x) f(x 0 ) lim. x x 0 x x 0 f(x) = f(x) f(x 0) + f(x 0 ) x x 0 (x x 0 ) = f(x 0 ) + f(x) f(x 0) x x 0 (x x 0 ) Nu kan vi beräkna gränsväret för f när x går mot x 0 : lim f(x) = lim f(x 0 ) + f(x) f(x 0) (x x 0 ) x x 0 x x0 x x 0 = f(x 0 ) + lim x x0 f (x 0 )(x x 0 ) = f(x 0 ) + f (x 0 ) 0 = f(x 0 ). Alltså är f kontinuerlig i x 0.

3 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT Räkneregler för erivator. Om f och g är eriverbara i x och c är en konstant å är f + g, f g och cf eriverbara i x och (f + g) (x) = f (x) + g (x), (f g) (x) = f (x) g (x), (cf) (x) = c(f (x)). fg är också eriverbar i x me (fg) (x) = f (x)g(x) + f(x)g (x). Om f(x) 0 så är 1/f eriverbar i x och ( ) 1 (x) = f (x) f (f(x)). 2 Om g(x) 0 så är f/g eriverbar i x och ( ) f (x) = g(x)f (x) f(x)g (x). g (g(x)) 2 Bevisen för essa regler följer av motsvarane regler för gränsvären Kejeregeln. Om funktionen f är eriverbar i punkten u, u = g(x) och g är eriverbar i x så är en sammansatta funktionen f g eriverbar i x och (f g) (x) = (f(g(x))) (x) = f (g(x))g (x). Detta kallas för kejeregeln. Termen g (x) i uttrycket kallas en inre erivatan. Vi har rean sett ett exempel av kejeregeln, nämligen fallet 1/f blan räknereglerna för erivator. 1/f är sammansättningen av funktionerna g(x) = 1/x och f, är f (x) = f (x) och g (x) = 1/x 2. Exempel. Funktionen h(x) = 1/x 2 (för x 0) är en sammansättning av f(u) = 1/u och g(x) = x 2. Derivatorna är f (u) = 1/u 2 och g (x) = 2x. Alltså är h (x) = (f g) (x) = 1 (x 2 ) 2x = 2 2 x. 3 Bevis av kejeregeln. Bevis. Antag att f är eriverbar i u = g(x) och g är eriverbar i x. Vi vill visa att f(g(x + h)) f(g(x)) lim = f (g(x))g (x). h 0 h Definiera funktionen E(k) som E(0) = 0 E(k) = f(u + k) f(u) f (u), k 0. k

4 4 JONAS ELIASSON E(k) mäter skillnaen mellan f:s erivata i u och approximationen till erivatan för ett litet k (et vill säga felet i approximationen). Enligt efinitionen av erivata så är lim k 0 E(k) = f (u) f (u) = 0. Alltså är E kontinuerlig i k = 0. Vi har också för alla k f(u + k) f(u) = (f (u) + E(k))k. Sätt nu u = g(x) och k = g(x + h) g(x). Då är u + k = g(x + h) och vi får f(g(x + h)) f(g(x)) = (f (u) + E(k))(g(x + h) g(x)). Eftersom g är eriverbar så är lim h 0 (g(x+h) g(x))/h = g (x). Funktionen g är också kontinuerlig i x. Alltså är lim h 0 k = lim h 0 g(x + h) g(x) = 0. Eftersom E är kontinuerlig i k = 0 så är lim h 0 E(k) = lim k 0 E(k) = E(0) = 0. Om vi sätter ihop allt etta så får vi: (f g) (x) = f(g(x + h)) f(g(x)) lim h 0 h = (f (g(x)) + E(k))(g(x + h) g(x)) lim h 0 h = (f (g(x)) + 0)g (x) = f (g(x))g (x) Derivatan av trigonometriska funktioner. Här kommer några resultat om trigonometriska funktioner. Först påminner vi om att funktionerna sin(x) och cos(x) är kontinuerliga för alla x. Ett viktigt gränsväre är sin(x) lim = 1. x 0 x Bevisen för erivatorna nean använer resultaten ovan samt geometriska omskrivningar för e trigonometriska funktionerna. Sats 2. sin(x) = cos(x). x cos(x) = sin(x). x x tan(x) = 1 cos 2 (x) = 1 + tan2 (x). x cot(x) = 1 sin 2 (x) = 1 cot2 (x).

5 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT Meelväressatsen. Denna sektion ägnas åt en mycket viktiga Meelväressatsen. Först formulerar vi satsen, sean visar vi några av e konsekvenser en har. Därefter formulerar och bevisar vi två hjälpsatser innan vi slutligen ger beviset för huvusatsen. Sats 3. Antag att f är kontinuerlig på ett slutet begränsat intervall [a, b] och att en är eriverbar på et öppna intervallet (a, b). Då finns et en punkt c i (a, b) så att f(b) f(a) b a = f (c). Två konsekvenser av Meelväressatsen: om f har positiv erivata (f (x) > 0) för alla x så att a < x < b så växer f på intervallet [a, b]. om f har erivatan 0 för alla x i intervallet (a, b) så är funktionen f konstant på [a, b]. Nu börjar vi beviset av Meelväressatsen me följane sats: Sats 4. Antag att f är efiniera på et öppna intervallet (a, b) och har sitt maximala väre i punkten c (a, b). Om f är eriverbar i c så är f (c) = 0 (vi säger att c är en stationär punkt till f). Bevis. Antag att f har sitt max i c och att f (c) finns. Då är f(x) f(c) 0 för alla x (a, b). Om c < x < b så är f(x) f(c) x c alltså är f (c) = lim x c + f(x) f(c) x c 0. På samma sätt om a < x < c så är f(x) f(c) x c 0, 0, alltså är f (c) = lim x c f(x) f(c) x c 0. Men f (c) 0 och f (c) 0 ger f (c) = 0. Nästa sats är så intressant i sig att en fått ett eget namn: Rolles sats. Sats 5. Antag att f är kontinuerlig på ett slutet begränsat intervall [a, b] och att en är eriverbar på (a, b). Om f(a) = f(b) så finns et en punkt c (a, b) så att f (c) = 0. Bevis. Om f(x) = f(a) = f(b) för alla x (a, b) så är f en konstant funktion och f (x) = 0 för alla x (a, b). Annars finns et en punkt x 0 (a, b) så att f(x 0 ) f(a). Antag att f(x 0 ) > f(a) (om f(x 0 ) < f(a) så blir beviset i stort sett likaant). Eftersom f är kontinuerlig på ett kompakt intervall så har f, enligt Max-Min satsen, sitt maximala väre i någon punkt c [a, b].

6 6 JONAS ELIASSON Nu är f(c) f(x 0 ) > f(a) = f(b). Alltså kan c inte vara punkterna a eller b. Alltså är f eriverbar i c så enligt föregåene sats är f (c) = 0. Nu kommer beviset för Meelväressatsen. Bevis. Antag att f uppfyller villkoren i satsen. Låt ( ) f(b) f(a) g(x) = f(x) f(a) + (x a). b a Funktionen g mäter, givet ett x, et vertikala avstånet mellan kurvan y = f(x) och en räta linjen från f(a) till f(b). g är kontinuerlig på [a, b] och eriverbar på (a, b) eftersom f är et. Dessutom är g(a) = g(b) = 0. Enligt Rolles sats finns et en punkt c (a, b) så att g (c) = 0. Eftersom g (x) = f f(b) f(a) (x) b a följer att f (x) = f(b) f(a). b a 1.8. Högre erivator. När man har eriverat en funktion f får man en ny funktion f. Denna nya funktion kan ha, eller inte ha, alla e egenskaper som alla anra funktioner kan ha. Funktionen f har en efinitionsmäng är en är efiniera. Den kan vara kontinuerlig, men behöver inte vara et. f kan vara eriverbar. I så fall kallar man erivatan av f för anra erivatan av f och betecknar en f (f bis). Me anra beteckningar skriver vi f (x) = y = 2 y x 2. På samma sätt kan f ha en n:te erivata f (n) Implicit erivering. Hittills har vi eriverat funktioner f(x). Vi har också pratat om en geometriska tolkningen av erivata som lutningen hos grafen till funktionen i en punkt. Men alla kurvor i planet är inte grafen av någon funktion. Till exempel är inte cirklar (x 2 + y 2 = K) möjliga att beskriva på formen y = f(x) (e är ock unionen av graferna till två funktioner, övre och unre halvcirkeln). Kan vi bestämma lutningen hos en såan kurva i en punkt? Ja, et kan vi ofta me hjälp av implicit erivering. Vi implicit erivering antar vi helt enkelt att ekvationen som beskriver kurvan implicit efinierar y som en funktion av x och använer sean kejeregeln för att hitta erivatan av y.

7 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 7 Ett exempel visar hur et fungerar. Exempel. Betrakta cirkeln x 2 + y 2 = 10 och hitta lutningen hos kurvan i punkten (1, 3). Vi skriver y som en funktion av x: x 2 + y(x) 2 = 10. Derivera alla termer me avseene på x: x x2 = 2x, 10 = 0 och x x y(x)2 = 2yy, en sista via kejeregeln. Alltså får vi 2x + 2yy = 0. Vi bryter ut y och får y = 2x 2y = x y. I punkten (1, 3) får vi alltså y = 1/3. Denna meto ger inget väre för y = 0 vilket är helt i sin orning eftersom kurvan har en lorät asymptot är. Att bevisa att implicit erivering verkligen fungerar ligger utanför enna kurs räckvi Transcenenta funktioner. En transcenent funktion är en funktion som inte kan konstrueras genom upprepa använning av e fyra räknesätten och potenser me rationella exponenter. Transcenenta funktioner vi eriverat tiigare är e trigonometriska funktionerna. Som beskrivs i Aams sektion 3.3 kan vi efiniera en logaritm (en naturliga logaritmen ln x) och motsvarane exponentialfunktion e x så att x ln x = 1 x och x ex = e x. En alternativ efinition är via e x = lim (1 + x ) n. n n Det finns också fler trigonometriska funktioner som vi är intresserae av erivatan på. Vi efinierar e inversa trigonometriska funktionerna genom arcsin x = y sin y = x och π/2 y π/2. arccos x = y cos y = x och 0 y π. arctan x = y tan y = x och π/2 y π/2. Dessa har erivatorna x arcsin x = 1. 1 x 2 x arccos x = 1 1 x 2.

8 8 JONAS ELIASSON x arctan x = x. 2 Vi visar et första fallet me hjälp av implicit erivering. Om y = arcsin x så har vi x = sin y(x) och π/2 y π/2. Derivera båa sior i ekvationen me avseene på x: Alltså 1 = (cos y)y. y = 1 cos y. Men me hjälp av trigonometriska ettan (sin 2 + cos 2 = 1) och et faktum att cos y 0 när π/2 y π/2 får vi att cos y = 1 sin 2 y = 1 x2. Alltså y 1 =. 1 x Extremvären. Nu ska vi börja prata lite mer om problemlösning relatera till erivator. En första tillämpning är att bestämma extremvären me hjälp av erivatan. En funktion f kan ha fyra sorters extremvären: (globalt) max väre för f (globalt) min väre för f lokalt max väre för f lokalt min väre för f Ett globalt max eller min är helt enkelt et som förut hetat max eller min för f: en punkt x 0 så att f(x 0 ) f(x) ( f(x 0 ) f(x)), för alla x är f(x) är efiniera, är ett globalt max (min). Lokala extremvären är extrema bara i en omgivning av punkten x 0. Det vill säga: f har ett lokalt max (min) i punkten x 0 om et finns ett h > 0 så att f(x 0 ) f(x) ( f(x 0 ) f(x)) för alla x är f är efiniera och x x 0 < h. Observera att alla globala extremvären också är lokala extremvären. Enligt e satser vi visat om största och minsta väre för en funktion så gäller att: Sats 6. Om f är efiniera på ett intervall I och har ett lokalt max eller min i en punkt x 0 I så är x 0 av någon av följane typ: (1) stationär (kritisk) punkt, f (x 0 ) = 0, (2) singulär punkt, f (x 0 ) finns inte, (3) änpunkt på intervallet I.

9 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 9 Är et omväna sant? Det vill säga om vi vet att x 0 är en stationär punkt, är å x 0 ett lokalt extremväre? Ett bra sätt att avgöra et är me hjälp av en teckentabell. Om erivatan är positiv innan x 0 och negativ efter så är x 0 ett lokalt max. Om erivatan är negativ innan och positiv efter så är x 0 ett lokalt min. Om erivatan har samma tecken före och efter x 0 så har funktionen varken ett lokalt max eller min i x Kurvskissning. En mycket vanlig typ av problem hanlar om kurvskissning. För att lösa ett såant problem kan man följa schemat nean: Stuera f(x): Hitta efinitionsmängen för f. Bestäm skärningen me koorinataxlarna (f(x) = 0, f(0) =?). Har f några symmetrier? Hitta ev. vertikala asymptoter (nämnaren = 0). Hitta ev. horisontella eller snea asymptoter (lim x ± f(x)). Stuera f (x): Hitta efinitionsmängen för f (singulära punkter, änpunkter). Stationära punkter (f (x) = 0). Teckentabell (max eller min). Stuera ev. f (x): Tecknet hos f (x) (typ av extrempunkt). En funktion f har en sne asymptot om en närmar sig en rät linje y = ax + b i oänligheten. Man ser att f har en sne asymptot om lim (f(x) (ax + b)) = 0. x ± Approximationer. Genom att beräkna erivatan till en funktion f i en punkt a kan vi hitta tangenten till kurvan y = f(x) i a: T (x) = f(a) + f (a)(x a). Vi kan tänka på enna tangent som en linjär approximation till f (linjär betyer första orningens polynom). I en bestäm mening är T (x) en bästa linjära approximationen till f: et är en ena såana är båe funktionen och ess erivata har samma väre som f i a T (a) = f(a) och T (a) = f (a). På samma sätt som me tangenten kan vi hitta en bästa approximation till f me polynom av högre orning P 2 (x) = f(a) + f (a)(x a) + f (a) (x a) 2. 2 För P 2 har vi P 2 (a) = f(a), P 2(a) = f (a) och P 2 (a) = f (a).

10 10 JONAS ELIASSON Vi kan generalisera etta till ett gotyckligt n: P n (x) = f(a) + f (a) (x a) + f (a) (x a) f (n) (a) (x a) n, 1! 2! n! förutsatt att alla erivatorna av f finns. P n kallas för Taylor polynomet av gra n för f vi x = a. Om x = 0 säger man ofta Maclaurin polynom. Hur bra approximation till f ger P n för x nära a? Taylors sats ger svaret. Sats 7. Om f är n + 1 gånger eriverbar på ett intervall I så att a, x I och om P n (x) är Taylor polynomet av gra n för f vi x = a så är f(x) = P n (x) + E n (x) (Taylors formel) är feltermen E n (x) (kalla Lagrangres restterm) ges av E n (x) = f (n+1) (X) (n + 1)! (x a)n+1, för något X, a X x. Satsen kan bevisas me hjälp av en generalisera Meelväressats men vi ger att annat bevis senare i kursen. Observera ock att E n (x) är liten, i alla fall betyligt minre än x a för x nära a. Taylorutvecklingar kan vara mycket använbara till exempel för att beräkna gränsvären. Nean ger vi några av e vanligaste vi x = 0. Istället för att skriva ut hela resttermen så använer vi så kalla oro notation O. Me O(x n+1 ) menar vi en funktion som beter sig som x n+1 när x går mot 0 (eller x a i allmänhet). e x = 1 + x + x2 2! + x3 3! xn n! + O(xn+1 ). sin x = x x3 3! + x5 5!... + ( 1)n 1 x 2n 1 (2n 1)! + O(x2n+1 ). cos x = 1 x2 2! + x4 x2n... + ( 1)n 4! (2n)! + O(x2n+2 ). ln(1 + x) = x x2 2 + x3 3 x4 xn ( 1)n 1 4 n + O(xn+1 ). arctan x = x x3 3 + x x 2n 1 ( 1)n 1 (2n 1) + O(x2n+1 ).

Modul 2 Mål och Sammanfattning

Modul 2 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Moul 2 Mål och Sammanfattning Derivata. 1. MÅL FÖR MODUL 2 Förstå och använa erivatans efinition Förstå och använa erivata

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Tel.: MATEMATIK Datum: 009-0- Ti: förmiag Chalmers Hjälpmeel: inga A.Heintz Telefonvakt: Tel.: 076-786 Lösningar till tenta TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, el A.. Sats Ange "geometriska" beviset

Läs mer

MAA151 Envariabelkalkyl läsåret 2016/17

MAA151 Envariabelkalkyl läsåret 2016/17 Lektionsuppgifter A Omgång 1 (5) Funktioner 1. Bestäm inversen till funktionen f efiniera enligt f() = 1/ 1. Specificera speciellt inversens efinitionsmäng och väremäng. Skissa även i ett och samma koorinatsystem

Läs mer

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06 FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim 0. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Envariabel SF1625: Föreläsning 11 1 / 13

Envariabel SF1625: Föreläsning 11 1 / 13 Envariabel SF1625: Föreläsning 11 1 / 13 Att göra denna vecka 2 / 13 Översikt över modul 4 (seminarium nästa måndag) Förändringstakter (4.1) Newton-Raphson (4.2) L Hopitals regel (4.3) Analys av funktioner

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella

Läs mer

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf. TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

MA2001 Envariabelanalys

MA2001 Envariabelanalys MA2001 Envariabelanalys Något om derivator del 1 Mikael Hindgren 11 november 2018 Derivatans definition Exempel 1 s-t-graf för ett föremål i rörelse. s(0) = 0. s s = v t Hastigeten konstant: Rät linje

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

Föreläsning 1. X kallas för funktionens definitionsmängd, mängden av funktionens alla värden kallas funktionens värdemängd.

Föreläsning 1. X kallas för funktionens definitionsmängd, mängden av funktionens alla värden kallas funktionens värdemängd. Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www.math.uu.se/ rikardo/ envariabelanalys/huvudsidor/index.html Funktioner En funktion f, från mängden

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5)

= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5) Matematikcentrum Matematik NF Räta linjen. Ange riktningskoefficient och skärningspunkter me alarna för följane linjer. a) y = 5 b) = y + 5 c) y = 5 + ) + y + = 0 e) y 4 = 0 f) + y = g) y 5 = h) y = 4

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

15. Ordinära differentialekvationer

15. Ordinära differentialekvationer 153 15. Orinära ifferentialekvationer 15.1. Inlening Differentialekvationer är en gren inom matematiken som beskriver en värl vi lever i bäst. Såana ekvationer kan beskriva matematiska moeller för många

Läs mer

MA2001 Envariabelanalys

MA2001 Envariabelanalys MA2001 Envariabelanalys Något om derivator del 2 Mikael Hindgren 12 november 2018 Derivatan av inversen till en funktion Exempel 1 y = f (x) = x är strängt växande och har en invers. Bestäm Df (x) och

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

Några viktiga satser om deriverbara funktioner.

Några viktiga satser om deriverbara funktioner. Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma

Läs mer

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59 Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004 KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b

Läs mer

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 11-12 Institutionen för matematik KTH 21-23 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

6. Samband mellan derivata och monotonitet

6. Samband mellan derivata och monotonitet 34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för

Läs mer

Formelsamling för TMV120 : HT-06

Formelsamling för TMV120 : HT-06 Formelsamling för TMV20 : HT-06 Följane är en lista över saker man ska kunna till tentan. Det ieala är förstås att man ska förstå allting på listan så att man kan svara på teorifrågor, och att man kan

Läs mer

Meningslöst nonsens. December 14, 2014

Meningslöst nonsens. December 14, 2014 December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett

Läs mer

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm VECKANS UPPGIFTER MENY FÖR HELA MOMENT 3 5B3 Amelia fr P och T ht 004 Uppgifter till Vecka 4. Förklara hur ett induktionsbevis fungerar.. Bevisa att 4 n är jämnt delbart med 3 för n =,, 3,... 3. Bevisa

Läs mer

Viktigaste begrepp, satser och typiska problem från kursen ALA-A år 2013.

Viktigaste begrepp, satser och typiska problem från kursen ALA-A år 2013. Viktigaste begrepp, satser och typiska problem från kursen ALA-A år 2013. Reela tal. Rationella tal. Irrationella tal. Slutna intervall. Öppna interlvall. s.5 Koordinater i plan. a(b+c)=ab+ac; Bråkräkning:

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge

Läs mer

Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6

Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6 Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 5 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

ÖVN 1 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll.

ÖVN 1 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. ÖVN - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelor och innehåll Orinära ifferenitalekvationer (ODEer) y = f(t, y) Lösning y(t) och efinitionsmäng

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 TM-Matematik Mikael Forsberg ovntenta Envariabelanalys ma3a Skrivtid: ::. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa på de uppgifter som kräver lösning. Frågorna till 6 ska

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Notera att ovanstående definition kräver att funktionen är definierad i punkten x=a.

Notera att ovanstående definition kräver att funktionen är definierad i punkten x=a. SAMMANFATTNING OM KONTINUERLIGA FUNKTIONER Definition (Kontinuitet i en punkt { f ( är kontinuerlig i punkten a} { lim f ( a } a eller ekvivalent: { f ( är kontinuerlig i punkten a} { lim lim f ( a a a+

Läs mer

Dagens ämnen. Entydighet hos Taylor- och Maclaurinpolynom

Dagens ämnen. Entydighet hos Taylor- och Maclaurinpolynom Dagens ämnen 1 / 10 Dagens ämnen Entydighet hos Taylor- och Maclaurinpolynom 1 / 10 Dagens ämnen Entydighet hos Taylor- och Maclaurinpolynom Konsekvenser av entydigheten 1 / 10 Dagens ämnen Entydighet

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Teorifrå gor kåp

Teorifrå gor kåp Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför

Läs mer

Bo E. Sernelius Funktioner av Komplex Variabel 15 KOMPLEXVÄRDA FUNKTIONER AV KOMPLEX VARIABEL

Bo E. Sernelius Funktioner av Komplex Variabel 15 KOMPLEXVÄRDA FUNKTIONER AV KOMPLEX VARIABEL Bo E. Sernelius Funktioner av Komplex Variabel 5 KOMPLEXVÄRDA FUNKTIONER AV KOMPLEX VARIABEL I etta kapitel efinierar vi en komplexvär funktion av en komplex variabel, ess erivata, begreppet analytiska

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 443 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standar 73 88 34 LMA33a Matematik BI Tentan rättas och bedöms anonymt. Skriv tentamenskoden

Läs mer

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: Tentamen 010-10-3 : Lösningar 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: x 5 0 och 3 x > 0 x 5 och x < 3, en motsägelse, eller x 5 0 och

Läs mer

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform.

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform. Kap 4.8 4.9. Taylors formel, Lagranges restterm, stort ordo, entydigheten, approimationer, uppskattning av felet, Maclaurins formel, l'hospitals regel. 60. (A) Bestäm MacLaurinutvecklingarna av ordning

Läs mer

KOKBOKEN 3. Håkan Strömberg KTH STH

KOKBOKEN 3. Håkan Strömberg KTH STH KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på

Läs mer

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2. Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid: HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b Lösningsförslag till Tentamen i Inledande matematik för E, (TMV57), 203-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) För vilka tal gäller 2 + > cos2 ()? Lösning:

Läs mer

Formelsamling för TMV120 : HT-10

Formelsamling för TMV120 : HT-10 Formelsamling för TMV120 : HT-10 Följane är en lista över saker man ska kunna till tentan. Det ieala är förstås att man ska förstå allting på listan så att man kan svara på teorifrågor, och att man kan

Läs mer

6.2 Implicit derivering

6.2 Implicit derivering 6. Implicit derivering 6 ANALYS 6. Implicit derivering Gränsvärden, som vi just tittat på, är ju en fundamental del av begreppet derivata, och i mattekurserna i gymnasiet har vi roat oss med att hitta

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24 och 24-25 25-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C = (5, 1).

Läs mer

Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1)

Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1) Förberedelser inför lektion 1 (första övningen läsvecka 1) Läs kapitel 0.10.3. Mycket av detta är nog känt sedan tidigare. Om du känner dig osäker på något, läs detta nogrannare. Kapitel 0.6 behöver inte

Läs mer

Endast kommenterade svar!!! OBS: Inte alla delsteg är redovisade!

Endast kommenterade svar!!! OBS: Inte alla delsteg är redovisade! MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Annemarie Luger Lösningsförslag Anals, problemlösning, 7.5 hp Matematik I den 5 februari 4 Endast kommenterade svar!!! OBS: Inte

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 1715 kl. 14. - 18. Tentamen Telefonvakt: Jonny Lindström 733 674 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv

Läs mer

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

Växande och avtagande

Växande och avtagande Växande och avtagande Innehåll 1 Växande och avtagande 1 Andraderivatan.1 Andraderivatan och acceleration................... Andrederivatans tecken.........................1 Andraderivatans nollställen:

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU22

Studietips inför kommande tentamen TEN1 inom kursen TNIU22 Studietips inför kommande tentamen TEN1 inom kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer