KURSPLANERING 5B1138 REELL ANALYS II, VT06
|
|
- Lars-Erik Ström
- för 6 år sedan
- Visningar:
Transkript
1 KURSPLANERING 5B1138 REELL ANALYS II, VT06 Kursen Reell analys II, 7p, är en mer avancerad alternativkurs till 5B1107 Diff&Int II, 6p. Teori och bevis betonas något mer än i den ordinarie kursen, men god räknefärdighet är också ett viktigt mål. Kursen bygger på 5B1137 Reell analys I men med lite extra ansträngning går den också att läsa med 5B1106 Diff&Int I som bakgrund. Kursledare: Kurt Johansson, Institutionen för matematik, kurtj@math.kth.se, tel Kurssekreterare: Rose-Marie Jansson, jansson@math.kth.se, tel Kurslitteratur: R. A. Adams, Calculus a Complete Course, femte upplagan. Visst kompletterande material kommer att utdelas. Kursinnehåll: Kap. 8, 10.1 och Avsnitten 8.1, 11.2, 11.6, 13.4, 13.6, 13.7, 14.7: , kap. 16.6: kan läsas kursivt. De behandlar delvis exempel från mekanik och fysik som återkommer i senare kurser. Kap. 10 repeterar delar av linjär algebra. En del av kursinnehållet finns i utdelat material. Inlämningsuppgifter: Fyra inlämningsuppgifter kommer att delas ut under kursens gång. Dessa kan ge maximalt 4 bonuspoäng på tentamen. Du förväntas arbeta självständigt med inlämningsuppgifterna. Sista inlämningsdag framgår av kursplaneringen nedan. Uppgifterna delas ut ungefär två veckor innan de ska lämnas in. Tentamen: Skriftlig tentamen 19/5. Anmälan krävs, se institutionens hemsida. Gamla tentor finns tillgängliga på hemsidan: Den som ligger nära gränsen för godkänt resultat vid tentamen erbjuds möjlighet att komplettera, dock bara till betyg 3. Komplettering sker genom ett muntligt förhör inom fyra veckor från tentamen. Kursplanering: Nedan följer ett preliminärt tidsschema för kursen. Ändringar kan komma att göras under kursens gång.
2 Föreläsning 1, 18/1 Topologi i n. Funktioner av flera variabler. Avsnitt 10.1: , (I Mattuck kan avsnitt 24.1, 24.2, 24.6, läsas.) Föreläsning 2, 23/1 Gränsvärden och kontinuitet. Likformig kontinuitet. Partiella derivator. Avsnitt 12.2, (I Mattuck kan avsnitt 24.3, 24.4, 24.5, 24.7 läsas.) Föreläsning 3, 25/1 Linjär approximation. Differentierbarhet. Totala derivatan. Avsnitt 12.5, 12.6 Föreläsning 4, 30/1 Högre ordningens derivator. Kedjeregeln. Gradient. Riktad derivata. Avsnitt 12.4, Föreläsning 5, 1/2 Högre ordningens approximation. Taylors formel. Föreläsning 6, 6/2 Inversa funktionssatsen. Material utdelas. Föreläsning 7, 8/2 Implicita funktionssatsen. Avsnitt Föreläsning 8, 13/2 Extremvärdesproblem för funktioner av flera variabler. Avsnitt 13.1, Föreläsning 9, 20/2 Extremvärdesproblem med bivillkor. Lagrangemultiplikatorer. Avsnitt Föreläsning 10, 22/2 Multipelintegraler. Avsnitt 14.1, 14.2, 14.3, 14.5 Inlämningsuppgift 1 ska lämnas in. Föreläsning 11, 27/2 Multipelintegraler forts. Variabelbyte. Avsnitt 14.4, 14.6 Föreläsning 12, 1/3 Multipelintegraler forts. Avsnitt Föreläsning 13, 6/3 Funktioner definierade av integraler. Utdelat material.
3 Föreläsning 14, 8/3 Kurvor. Rektifierbarhet. Krökning, torsion och Frenet-Serrets formler. Avsnitt , 11.1, Inlämningsuppgift 2 skall lämnas in. Föreläsning 15, 20/3 Vektoranalys. Fält. Konservativa fält. Potential. Divergens, gradient och rotation. Nablaoperatorn. Avsnitt 15.1, 15.2, 16.1, Föreläsning 16, 22/3 Linjeintegraler. Oberoende av väg. Avsnitt 15.3, Föreläsning 17, 27/3 Ytor. Area. Ytintegraler. Avsnitt 15.5, Inlämningsuppgift 3 skall lämnas in. Föreläsning 18, 29/3 Ytintegraler forts. Greens sats i planet. Gauss sats. Avsnitt 16.3, Föreläsning 19, 3/4 Stokes sats. Tolkning av divergens och rotation. Avsnitt 16.5, Föreläsning 20, 5/4 Homotopi. Vektorpotential. Existens av potential. Avsnitt Föreläsning 21, 5/4 Utgår. Föreläsning 22, 19/4 Kontinuitetsekvationen. Värmeledningsekvationen. Potentialteori. Avsnitt 16.6 och udelat material. Föreläsning 23, 24/4 Potentialteori forts. Något om differentialformer. Föreläsning 24, 26/4 Differentialformer. Exakta differentialekvationer. Avsnitt Appendix A-27 - A-30 och utdelat material. Föreläsning 25, 2/5 Reserv. Repetition. Föreläsning 26, 3/5 Repetition. Inlämingsuppgift 4 skall lämnas in.
4 Föreläsning 27, 8/5 Repetition. Föreläsning 28, 9/5 Reserv. Övningsförslag: Det finns bra övningar tillgängliga på nätet via kursens hemsida, Ett urval av lämpliga övningar ur detta material kommer att föreslås under kursens gång. Se till att göra tillräckligt många övningar av standardkaraktär, så att du får tillräcklig räknefärdighet, och dessutom en del mer utmanande problem. Boken innehåller också ett stort antal övningar. Nedan ges ett urval rekommenderade övningar. 8.2: 4, 9, 11, 19, : 5, 9, : 3, 9, : 9, : : 19, 32, 33, 36, 37, : 9, 17, 29, : 11, 13, 17, : 3, 5, 7, : 3, 5, 13, 16, Challenging problems: : 7, 15, 21, : 3, 7, 9, 15, 19, : 11, 13, 21, 35, 36, : 9, 15, 16, : 3, 11, 15, 17, 21, 23, 29, 30, 32, 33, : 5, 7, 13, 15, : 5, 7, 11, 15, 16, 21, 34, 35, : 1, 3, 9, 17, 23, 25, 26, 27, 29
5 12.9: 5, 12, 15, : 5, 9, 15, 17, 19, 21, 23, : 1, 3, 5, 9, 11, 13, : 1, 3, 7, 9, 13, 22, : 6, 7, 13, 15, 22, Challenging problems: : 13, 17, : 3, 9, 11, 13, 15, 19, 23, 25, : 1, 3, 7, 8, 9, 13, 21, : 3, 9, 17, 23, 25, 27, 33, : 3, 5, 7, 11, 15, : 1, 3, 9, 13, 17, 21, 25, 27, : 1, 5, 9 14 Challenging problems: 3, : 1, 3, 7, 9, 13, : 1, 5, 7, 13, : 3, 7, 11, 21, 22, 23, : 3, 7, 15, 19, 21, : 7, 9, 13, : 3, 9, 13, : 4, 5, 6, 9, 10, 12, 14, : 1, 3, 5, 7, : 1, 5, 9, 11, 13, 19, 20, 23, 24, 25, : 1, 3, 5, 7, 9, 11, : : 3, 5, Challenging problems: 2, 5
Flervariabelanalys. Undervisning Undervisning sker i form av föreläsningar (39 st) och lektioner (20 st).
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Vårterminen 2012 Flervariabelanalys för F1, KandMa1, KandFy1 och Gylärare Kursen behandlar följande ämnen: 1. Flervariabelanalys. Kursbok är Calculus: a complete
5B1107 Differential- och integralkalkyl II, del 2 för F1, 6 poäng, vt 2002.
Institutionen för Matematik,KTH Olle Stormark 5B1107 Differential- och integralkalkyl II, del 2 för F1, 6 poäng, vt 2002. Kurslitteratur: Calculus av Robert A. Adams (fourth edition). Kursen omfattar följande
SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009.
SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009. Kurt Johansson, Inst för Matematik, KTH 2 mars 2009 Kursinnehåll: Grundläggande kurs i differential- och integralkalkyl i flera variabler.
Julia Viro KURSBESKRIVNING
Analys MN2 Uppsala universitet Matematiska institutionen Kursbeskrivning och läsanvisningar Julia Viro 2007-01-22 KURSBESKRIVNING Lärare: Julia Viro (julia@math.uu.se), föreläsningar och lektioner för
KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001
INSTITUTIONEN FÖR MATEMATIK Per Sjölin KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 Kursledare: Per Sjölin, rum 3632, Lindstedtsvägen 25, tel 790 7204, pers@math.kth.se.
SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008.
SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. Anders Karlsson, Inst för Matematik, KTH January 22, 2008 Kursinnehåll: Grundläggande kurs i di erential- och integralkalkyl i era variabler.
SF1626 Flervariabelanalys, 7.5 hp, för M1 vt 2009.
KTH Matematik, Jockum Aniansson, efter Olle Stormark. KursPM SF1626 Flervariabelanalys, 7.5 hp, för M1 vt 2009. Flervariabelanalysen är en rättfram generalisering av envariabelsmatematiken till funktioner
Läsanvisningar Henrik Shahgholian
Institutionen för matematik SF1626 Flervariabelanalys Läsanvisningar Henrik Shahgholian Läsanvisningarna nedan är har tagits fram som hjälpmedel för de studenter som vill helst ha en snabb tillgång till
Planering Analys 1, höstterminen 2011
Nr 1 Matematikcentrum Matematik NF Planering Analys 1, höstterminen 2011 Program Anders Olofsson Kurslitteratur: Adams RA, Essex C, Calculus a complete course, sjunde upplagan, 2010 (A). Gamla tentor delas
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed.
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Del 2 (funktioner av flera variabler). Omfattning: Kapitel 8.2, 8.3 t.o.m. s 497, 8.4, endast båglängd, 8.5 tom s. 506, 10.1, 10.5,
Matematik 2 för media, hösten 2001
Matematik 2 för media, hösten 2001 Välkomna till Matematik 2 kursen! Lärare Föreläsare Tommy Ekola tel. 790 66 59 epost ekola@math.kth.se rum 3734, plan 7, matematikinstitutionen Assistenter Mattias Andersson
Studiehandledning. till 5B4004 ANALYS II. Distanskurs 10 poäng
Studiehandledning till 5B4004 ANALYS II Distanskurs 10 poäng Kurslitteratur: Persson/Böiers: Analys i flera variabler./ Studentlitteratur. Övningar till Analys i flera variabler/ Lunds Tekniska Högskola
FYSA21 Teori, höstterminen 2013 Naturvetenskapliga tankeverktyg
Nr 1 Matematikcentrum Matematik NF FYSA21 Teori, höstterminen 2013 Naturvetenskapliga tankeverktyg Program 2 september 20 december Föreläsare: Anders Olofsson, rum 520 Matematik NF, Sölvegatan 18, telefon:
Repetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
* Läsvecka 1 * Läsvecka 2 * Läsvecka 3 * Läsvecka 4 * Läsvecka 5 * Läsvecka 6 * Läsvecka 7 * Tentamenssvecka. Läsvecka 1
Detta är en preliminär planering över undervisningen i kursen och är tänkt att hjälpa dig att få ut så mycket som möjligt av föreläsningarna. Till varje föreläsningsdag finns förberedelser, innehåll och
Flervariabelanalys. F1, KandMa1, KandFy1 och Gylärare
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Vårterminen 2010 Kurslitteratur Flervariabelanalys för F1, KandMa1, KandFy1 och Gylärare Robert A. Adams, alculus: a complete course, 6th ed., Addison Wesley,
VEKTORANALYS Kursprogram VT 2018
VEKTORANALYS Kursprogram VT 2018 Allmänt om kursen Målsättningen med kursen är att lära ut ett antal grundläggande matematiska metoder, som under de fortsatta studierna kommer att tillämpas i flera olika
ED1110 VEKTORANALYS 4,5 hp
Fusionplasmafysik Skolan för Elektro- och Systemteknik KTH, Teknikringen 31 Lorenzo Frassinetti - Jan Scheffel KURS-PM HT 2011 ED1110 VEKTORANALYS 4,5 hp (utgör även delmoment 1) i kursen SI1143 Matematisk
Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt
Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,
Planering Matematik II Period 3 VT Räkna själv! Gör detta före räkneövningen P1. 7, 17, 21, 37 P3. 29, 35, 39 P4. 1, 3, 7 P5.
Avsnitt 1, Inledning ( Adams P1,P3,P4, P5) Genomgång och repetition av grundläggande begrepp. Funktion, definitionsmängd, värdemängd. Intervall. Olikheter. Absolutbelopp. Styckvis definierade funktioner.
5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006.
Institutionen för Matematik, KTH, Olle Stormark. 5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006. Detta är en grundläggande kurs i differential - och integralkalkyl för funktioner av en variabel. Enligt
Matematik och statistik NV1, 10 poäng
UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 2006 Matematik och statistik NV1, 10 poäng Välkommen till Matematiska institutionen och kursen Matematik och statistik NV1, 10p. Kursen består
Flervariabelanalys. Programkurs 8 hp Calculus in Several Variables TATA43 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(9) Flervariabelanalys Programkurs 8 hp Calculus in Several Variables TATA43 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum 2(9) Huvudområde
Kursplan. Matematik B, 30 högskolepoäng Mathematics, Intermediate Course, 30 Credits. Mål 1(5) Mål för utbildning på grundnivå.
1(5) Denna kursplan har ersatts av en nyare version. Den nya versionen gäller fr.o.m. Vårterminen 2015 Kursplan Institutionen för naturvetenskap och teknik Matematik B, 30 högskolepoäng Mathematics, Intermediate
Flervariabelanalys. F1, KandMa1, KandFy1 och Gylärare
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Vårterminen 2011 Kurslitteratur Flervariabelanalys för F1, KandMa1, KandFy1 och Gylärare Robert A. Adams, hristopher Essex, alculus: a complete course, 7th
Kursplan. Matematiska och systemtekniska institutionen (MSI) Kurskod GUX712 Dnr MSI 03/04:16 Beslutsdatum 2003-10-10
Kursplan Matematiska och systemtekniska institutionen (MSI) Kurskod GUX712 Dnr MSI 03/04:16 Beslutsdatum 2003-10-10 Kursens benämning Engelsk benämning Ämne Specialisering - ämnesfördjupning i matematik/matematikdidaktik
Flervariabelanalys för F och KandMa vt 2013, 10 hp
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Thomas Önskog Flervariabelanalys för F och KandMa vt 203, 0 hp Kurskod: MA06/MA3. Kurslitteratur: Robert Adams, hristopher Essex, alculus : a complete course.
SF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Thomas Önskog ENVARIABELANALYS FÖR F OCH Q HT 2012, 10 HP Kurskod: 1MA013. Kurslitteratur: Robert Adams, Christopher Essex, Calculus : a complete course. Pearson
Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016
Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016 Kursansvarig/Examinator: Staffan Lundberg, TVM Telefon: 0920-49 18 69 Rum: E882 E-post: Lärare i Skellefteå: Eva Lövf, tfn. 0910-58 53
Kursplan. Matematik B, 30 högskolepoäng Mathematics, Intermediate Course, 30 Credits. Mål 1(5) Mål för utbildning på grundnivå.
1(5) Kursplan Institutionen för naturvetenskap och teknik Matematik B, 30 högskolepoäng Mathematics, Intermediate Course, 30 Credits Kurskod: MA2000 Utbildningsområde: Naturvetenskapliga området Huvudområde:
TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier
Kurs-PM MATEMATIK 2 (7.5 hp) P4, HF1000, ( tidigare 6H3011) Kursansvarig: Armin Halilovic, http://www.sth.kth.se/armin E-Mail armin@sth.kth.se rum 5046, Campus Haninge KURSFORDRINGAR: Examination: Godkända
Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp
Statistiska institutionen VT2011 Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp MOMENTETS INNEHÅLL Momentet ger studenten kunskap om ett antal olika statistiska modeller och hur
LINJÄR ALGEBRA OCH DIFFERENTIALEKVATIONER, M0031M VT-16
LINJÄR ALGEBRA OCH DIFFERENTIALEKVATIONER, M0031M VT-16 Denna kurs innehåller fyra olika delar: komplexa tal, linjär algebra, differentialekvationer och en laboration i Matlab. Vi börjar med en introduktion
Tentamen i Flervariabelanalys F/TM, MVE , kl
Tentamen i Flervariabelanalys F/TM, MVE35 26-4-2, kl. 4-8 Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Edvin Wedin För godkänt krävs minst 2 poäng. Betyg 3: 2-29.5 poäng, betyg
MATEMATIKPROGRAMMET, 180 HÖGSKOLEPOÄNG
INSTITUTIONEN FÖR NATURVETENSKAP Utbildningsplan Dnr CF 52-510/2006 Sida 1 (6) MATEMATIKPROGRAMMET, 180 HÖGSKOLEPOÄNG Mathematics Programme, 180 ECTS Utbildningsprogrammet är inrättat den 7 juni 2001 av
Fysikens matematiska metoder hösten 2006
Teoretisk Fysik KTH Fysikens matematiska metoder hösten 2006 Ämnesbeskrivning 5A1305 Nästan samtliga modeller av verkliga fysikaliska problem ger upphov till differentialekvationer med derivator av flera
Förkunskaper Studenten skall för att kunna tillgodogöra sig kursen ha förkunskaper motsvarande Matematik A, B och C i gymnasieskolan.
5B1134 Matematik och modeller, 4 poäng, ht 2004 Kurs-PM 2004-08-28 Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C till de första kurser i matematik som ges på KTHs civilingenjörsprogram,
Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts.
5B1103, Differential och integralkalkyl II, del 1. LÄSANVISNINGAR TILL R.A. ADAMS, CALCULUS, A COMPLETE COURSE, 4TH ED. OMFATTNING: kapitel 1.1 1.5, Appendix III, 2, 3.1 3.4, 3.5 till def. 13, 17.7 t.o.m.
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
Tentamen i Flervariabelanalys, MVE , π, kl
Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg
MATEMATIKPROGRAMMET, 180 HÖGSKOLEPOÄNG
AKADEMIN FÖR NATURVETENSKAP OCH TEKNIK Utbildningsplan Dnr CF 52-622/2009 Sida 1 (6) MATEMATIKPROGRAMMET, 180 HÖGSKOLEPOÄNG Mathematics Programme, 180 Higher Education Credits Utbildningsprogrammet är
Övningsuppgifter. 9 Linjer i planet och rummet Plan i rummet : 32, 33 Övningar4(sida 142) exempel
Detaljplanering: Kurs: Matematik I HF1903, År 2013/14 Period: P1, Rekommenderande uppgifter i boken Matematik för ingenjörer, Rodhe, Sollervall er finns på kursens webbadress : www.sth.kth.se/armin/ar_13_14/hf1903/dirhf1903_13_14.html
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012.
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare
5B B1134 Matematik och modeller, 4 poäng, ht 2006 Kurs-PM
2006-08-30 5B1134 Matematik och modeller, 4 poäng, ht 2006 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
FYSIKPROGRAMMET, 180 HÖGSKOLEPOÄNG
AKADEMIN FÖR NATURVETENSKAP OCH TEKNIK Utbildningsplan Dnr CF 52-26/2009 Sida 1 (7) FYSIKPROGRAMMET, 180 HÖGSKOLEPOÄNG Physics Programme, 180 Higher Education Credits Utbildningsprogrammet är inrättat
5B B1134 Matematik och modeller, 4 poäng, ht 2005 Kurs-PM
2005-08-31 5B1134 Matematik och modeller, 4 poäng, ht 2005 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
SF1620 Matematik och modeller, 6 högskolepoäng, ht 2007
2007-09-03 SF1620 Matematik och modeller, 6 högskolepoäng, ht 2007 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). kurspm SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2008. Detta är en grundläggande kurs i differential- och integralkalkyl för
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013.
Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare
Kursinformation och studiehandledning, M0043M Matematik II Integralkalkyl och linjär algebra, Lp II 2016.
Kursinformation och studiehandledning, M0043M Matematik II Integralkalkyl och linjär algebra, Lp II 2016. Examinator, kursansvarig: Staffan Lundberg. Rum: E 882. E-post: lund@ltu.se Telefon: 0920-49 18
Kursplan. Matematik A, 30 högskolepoäng Mathematics, Basic Course, 30 Credits. Mål 1(5) Mål för utbildning på grundnivå.
1(5) Denna kursplan är nedlagd eller ersatt av ny kursplan. Kursplan Institutionen för naturvetenskap och teknik Matematik A, 30 högskolepoäng Mathematics, Basic Course, 30 Credits Kurskod: MA1000 Utbildningsområde:
Inledande matematik M+TD
Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet
23 Konservativa fält i R 3 och rotation
Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast
SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009.
Institutionen för Matematik, KTH, Jockum Aniansson (efter Olle Stormark). Kursplan SF 1625 Envariabelanalys, 7.5 hp, för M1 ht 2009. Denna kursplan nås via kursens hemsida /index.html som finns under http://www.math.kth.se/math/gru/2009.2010/sf1625/cmast/
2.5 Partiella derivator av högre ordning.
2.3 Kedjeregeln Pass 4 Antag att: 1. funktionen f( x) = (f 1 (x 1, x 2,..., x n ),..., f m (x 1, x 2,..., x n )) är dierentierbar i N R n ; 2. funktionen g( t) = (g 1 (t 1, t 2,..., t p ),..., g n (t 1,
Kap Krökning i allmän parametrisering. Endast sid 619 och Exempel 2 sid 621. Teori: Sid 619. Härledning av v a = v 3 κ ˆB så att κ = v a /v 3
TMV160/TMV191 Analys i flera variabler M+T, 2007 08 AMMANFATTNING. TEORIFRÅGOR. Kap 11.1. Vektorvärd funktion v(t). eriveringsregler, ats 1. Kap 11.3. Parametrisering av kurvor: r = r(t), a t b Tangent
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med
Endimensionell analys fr.o.m. ht 2007
Endimensionell analys fr.o.m. ht 2007 Med start ht 2007 ges en ny kurs i Endimensionell analys om 15 (nya) hp. Förändringen syftar till att underlätta övergången från gymnasium till högskola och till att
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann
STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann KURSBESKRIVNING FÖR FINANSIELL STATISTIK, 7.5 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV TVÅ MOMENT: Teori, skriftlig tentamen, 6 högskolepoäng
Linjär algebra och geometri 1
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear
KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03 Allmänt Kursen ger 9hp och omfattar 36 timmar föreläsning, 28 timmar
Kursinformation och lektionsplanering BML402
Kursinformation och lektionsplanering Matematik specialisering för basår, 7 hp. Syfte och organisation Kursen är valbar och bygger vidare på tidigare matematikkurser på basåret. Syftet är att ge en god
Kursbeskrivning för statistisk teori med tillämpningar I + II, 15 hp
Statistiska institutionen VT 2012 Kursbeskrivning för statistisk teori med tillämpningar I + II, 15 hp Kursen består av två moment: 1. Statistisk teori med tillämpningar I 2. Statistisk teori med tillämpningar
KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng
1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT
Matematik I - vårtermin Anu Kokkarinen Kurskoordinator
Matematik I - vårtermin 2015 Anu Kokkarinen Kurskoordinator anuk@math.su.se 08-16 45 26 Allmänt om kursen Uppdelad i algebra och analys Halvfart: algebra under termin 1 analys under termin 2. Helfart:
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
Flervariabelanalys E2, Vecka 3 Ht08
Flervariabelanalys E2, Vecka 3 Ht8 Omfattning och innehåll 2.7 Gradienter och riktningsderivator. 2.8 Implicita funktioner 2.9 Taylorserier och approximationer 3. Extremvärden 3.2 Extremvärden under bivillkor
Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp
Statistiska institutionen HT 2014 Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp Kursen består av fyra moment: 1. Statistisk teori med tillämpningar I, tentamen, 6 hp 2. Inlämningsuppgift
BML131, Matematik I för tekniskt/naturvetenskapligt basår
BML131 ht 2013 1 BML131, Matematik I för tekniskt/naturvetenskapligt basår Syfte och organisation Matematiken på basåret läses i två obligatoriska kurser; under första halvan av hösten BML131 (Matematik
Flervariabelanalys E2, Vecka 6 Ht08
Flervariabelanalys E2, Vecka 6 Ht08 Omfattning 6., 6.3-6.5 Innehåll: Gradient, divergens, rotation, Greens sats/formel, divergenssatsen i två och tre dimensioner, tokes sats tma043 V6, Ht08 bild Mål: För
Valinformation Mekatronik VT 2017
Valinformation Mekatronik VT 2017 Mekatronik 180hp Campus Lindholmen Mekatronik Åk 1 LP1 LP2 LP3 LP4 Introduktion till mekatronik PPU151 Digital och datorteknik Elektriska kretsar LEU471 Termodynamik och
Analys 2 M0024M, Lp
Analys 2 M0024M, Lp 4 2013 Lektion 1 Staffan Lundberg Luleå Tekniska Universitet 4 april 2013 Staffan Lundberg (LTU) Analys 2 M0024M, Lp 4 2013 4 april 2013 1 / 17 Kursinformation m.m. Examinator: Lennart
SF1625 Envariabelanalys
Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:
Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur
UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:
Undervisningsplan MEKANIK II, för WQF, VT 2015
Institutionen för fysik och astronomi W2, Q1, F1 VT 2015 Undervisningsplan MEKANIK II, för WQF, VT 2015 Kurslitteratur : Dynamics av Bedford och Fowler (Femte upplagan, med SI- enheter, från 2008). Mekanik:
Matematik I - höstermin Anu Kokkarinen Kurskoordinator
Matematik I - höstermin 2015 Anu Kokkarinen Kurskoordinator anuk@math.su.se 08-16 45 16 Allmänt om kursen Uppdelad i algebra och analys Halvfart: algebra under termin 1 analys under termin 2. Helfart:
Kursbeskrivning för Ekonometri, 15 högskolepoäng
Kursbeskrivning för Ekonometri, 15 högskolepoäng Allmänt Kursen består av fyra moment: I) Ekonometri I, tentamen 6 högskolepoäng II) Ekonometri I, inlämningsuppgift 1.5 högskolepoäng III) Ekonometri II,
Matematik I. hösttermin Jennifer Chamberlain Kurskoordinator
Matematik I hösttermin 2017 Jennifer Chamberlain Kurskoordinator matematik-i@math.su.se 08-16 45 16 Allmänt om kursen Uppdelad i algebra och analys Halvfart: algebra under termin 1 analys under termin
ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle
Humanistiska och teologiska fakulteterna ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd
SF1626 Flervariabelanalys
1 / 14 SF1626 Flervariabelanalys Föreläsning 7 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 14 SF1626 Flervariabelanalys Dagens Lektion Kap 12.8 1. Implicit definierade
Kursinformation och studiehandledning, Matematik III - Differentialekvationer, komplexa tal och transformteori, Lp III 2016.
Institutionen för teknikvetenskap och matematik Kursinformation och studiehandledning, Matematik III - Differentialekvationer, komplexa tal och transformteori, Lp III 2016. Kursansvar: Staffan Lundberg,
Kursanvisningar. Lektion 1 1 Repetition av vektoranalysens grunder. Skalära fält och vektorfält. KREYSZIG 9: Kapitel Kompendiet: Kapitel 1
Kursanvisningar Teorikrav: 1. Att kunna samtliga ingående definitioner och satser, samt kunna bevisa följande satser (KREYSZIG 9): Kapitel 9.7: Sats 1 (s. 405) Kapitel 10.2: Sats 1 (s. 426) Sats 3 ( s.
Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp
Statistiska institutionen VT 2015 Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp Kursen består av fyra moment: 1. Statistisk teori med tillämpningar I, tentamen, 6 hp 2. Inlämningsuppgift
Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00.
Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (hem: 08-716 80 34) e-post: olohed@math.kth.se Mottagningstid:
x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.
MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full
Ht Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra
Ht-2010 Umeå universitet Institutionen för matematik och matematisk statistik PAB Läsanvisningar till Hilbertrum och partiella differentialekvationer Del 1 Ur Anton, Rorres; Elementary Linear Algebra 10.1-10.
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic
TENTAMEN 8 jan 0 Tid: 08.5-.5 Kurs: Matematik HF90 (6H90) 7.5p Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA044 Flervariabelanalys E2 2014-10-30 kl. 8.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Elin Solberg, telefon: 0703 088 304 Hjälpmedel: bifogat formelblad,
Kursplan för kurs på grundnivå
Kursplan för kurs på grundnivå Matematik för lärare, 30hp (61-90 hp), gymnasiet - ingår i lärarlyftet 30.0 Högskolepoäng Mathematics for Teachers, 30 hp (61-90 hp), Upper-secondary School - in 30.0 ECTS
Kursinformation och lektionsplanering BML402
Kursinformation och lektionsplanering Matematik specialisering för basår, 7 hp. Syfte och organisation Kursen är valbar och bygger vidare på tidigare matematikkurser på basåret. Syftet är att ge en god
SF1626 Flervariabelanalys
1 / 15 SF1626 Flervariabelanalys Föreläsning 6 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 15 SF1626 Flervariabelanalys Dagens Lektion För funktioner från R n till R ska
Introduktionsmöte om självständiga arbeten i matematik, höstterminen 2016
Introduktionsmöte om självständiga arbeten i matematik, höstterminen 2016 Erik Palmgren (Huvudlärare) 30 augusti 2016 1 / 10 Självständiga arbeten i Matematik (MM6001 och MM6004) Syfte: att självständigt
SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht Kurs-PM SF1658
SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht 2008 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.