LMA521: Statistisk kvalitetsstyrning
|
|
- Jörgen Hansson
- för 6 år sedan
- Visningar:
Transkript
1 Föreläsning 3
2 Föregående föreläsning Dubbel provtagningsplan Tabeller för Dubbel provtagningsplan
3 Dagens innehåll 1 Genomsnittsligt provuttag 2 Genomgång av problem 116 från boken 3 Genomsnittslig kontrollomfattning 4 Genomsnittslig utgående kvalitet 5 Genomgång av problem 124 från boken
4 Sekventiell provtagningsplan För resonemanget från dubbel provtagningsplan vidare Från urval 2 kan man gå vidare till urval 3 etc Detta kallas för sekventiell provtagningsplan ( Ingår inte i kursen!) Figur: För varje kontrollerad enhet undersöker man ifall antal defekta är inom intervallet (mellan röd och grön linje)
5 Genomsnittsligt provuttag Vi vill ha ett mått på hur många enheter vi i genomsnitt kommer att kontrollera Denition: Genomsnittsligt provuttag ASN(p) = genomsnittsligt provuttag (Average Sample Number) Förväntat antal enheter kontrollerade för given provtagningsplan och p-värde ASN(p) = N kp(accepterar eller avvisar då k kontrollerats) k=0 Enkel provtagningsplan Man kontrollerar alltid n:st enheter ASN(p) = n Dubbel provtagningsplan ASN(p) = n 1 + n 2 P(c 1 < ξ 1 (p) < r 1 )
6 Problem: 116 Beräkna ASN för ett parti med felkvoten 6% Använd den dubbla provtagningsplanen n 1 = 30, n 2 = 60, c 1 = 0, c 2 = 2 och r 1 = r 2 = 3
7 Problem: 116 Beräkna ASN för ett parti med felkvoten 6% Använd den dubbla provtagningsplanen n 1 = 30, n 2 = 60, c 1 = 0, c 2 = 2 och r 1 = r 2 = 3 Lösning: 116 p = 006 och vi antar binomialapproximation ( n N vanligt ξ 1 Bin(n = 30, p = 006) P(0 < ξ 1 < 3) = 2 ( ) k k k=1 k < 01) som = = 576% 2 ASN(6%) = = 6456
8 Tabell: Tabell för dubbel provtagningsplan när n 2 = 2n 1 och α = 5%, β = 10% Provtagningsplan nr p2 p1 Approximativt Acceptanstal värde på n 1 p då L(p) = c 1 c Approx värde på ASN(p 1 )/n Sista kolumnen i tabellerna för dubbel provtagningsplan ger oss ett approximativt värde för ASN(p 1 )
9 Tabell: Tabell för dubbel provtagningsplan när n 2 = 2n 1 och α = 5%, β = 10% Provtagningsplan nr p2 p1 Approximativt Acceptanstal värde på n 1 p då L(p) = c 1 c Approx värde på ASN(p 1 )/n Tex om vi vill ta reda på ASN(p 1 ) för vår dubbla provtagningsplan från föregående exempel
10 Tabell: Tabell för dubbel provtagningsplan när n 2 = 2n 1 och α = 5%, β = 10% Provtagningsplan nr p2 p1 Approximativt Acceptanstal värde på n 1 p då L(p) = c 1 c Approx värde på ASN(p 1 )/n p 1 = = 001
11 Tabell: Tabell för dubbel provtagningsplan när n 2 = 2n 1 och α = 5%, β = 10% Provtagningsplan nr p2 p1 Approximativt Acceptanstal värde på n 1 p då L(p) = c 1 c Approx värde på ASN(p 1 )/n p 1 = = 001 ASN(p 1 ) = = (korrekt svar)
12 Faktum är att eftersom ASN(p) beror på p för en dubbel provtagningsplan så kan vi rita ut den som en graf ASN(p) p Figur: ASN(p) för den dubbla provtagningsplanen från föregående exempel
13 Vi kan jämföra detta med en enkel provtagningsplan med samma producent och konsumentrisk Alltså: p 1 = 1% och p 2 = 807 p 1 = 807% (från tabellen) För att ta reda på den enkla provtagningsplanen så använder vi oss av binomialfördelningsnomogrammet, L(1%) = 095, L(807%) = 10%
14
15
16
17
18 Vi kan jämföra detta med en enkel provtagningsplan med samma producent och konsumentrisk Alltså: p 1 = 1% och p 2 = 807 p 1 = 807% (från tabellen) För att ta reda på den enkla provtagningsplanen så använder vi oss av binomialfördelningsnomogrammet, L(1%) = 095, L(807%) = 10% n = 55 c = 2
19 För de esta p-värden är ASN bättre med den dubbla provtagningsplanen Men inte i intervallet [002, 009] ASN(p) p Figur: ASN(p) för dubbel provtagningsplan och enkel provtagningsplan
20 Genomsnittslig kontrollomfattning Vad gör man efter att man valt att avvisa ett helt parti? I många fall vill man kontrollera hela partiet för att få en förståelse för varför så många var defekta och för att sälja de som faktiskt fungerade ATI är ett mått som berättar hur många man genomsnittsligt kan behöva kontrollera givet att ett avvisat parti allkontrolleras Denition: Genomsnittslig kontrollomfattning ATI(p) = genomsnittslig kontrollomfattning (Average Total Inspection) Förväntat antal enheter som kommer kontrolleras ATI (p) = N kp(accepterar då k kontrollerats) k=0 + NP(Partiet avvisas)
21 Enkel provtagningsplan ATI (p) = nl(p) + N(1 L(p)) Dubbel provtagningsplan ATI (p) = n 1 P(ξ 1 c 1 ) + (n 1 + n 2 )P((ξ 1 + ξ 2 c 2 ) (ξ 1 > c 1 )) + NP((ξ 1 r 1 ) ((c 1 < ξ 1 < r 1 ) (ξ 1 + ξ 2 r 2 ))) ATI (p) varierar beroende på p för både en enkel och dubbel provtagningsplan
22 Exempel: dubbel provtagningsplan Antag provtagningsplanen n 1 = 20, n 2 = 30, c 1 = 2, r 1 = 5, c 2 = 4, r 2 = 5 Partiet består av N = 1000 enheter Vad blir ATI (p = 10%)?
23 Lösning: första termen Antag binomialfördelning: ξ 1 Bin(n = 20, p = 10%) n 1 P(ξ c 1 ) = ( 2 20 ) 20 k=0 01k k = = k
24 Lösning: andra termen ξ 2 Bin(n = 30, p = 10%) P((ξ 1 + ξ 2 c 2 ) (ξ 1 > c 1 )) = P(ξ 2 0) = = 4239% 4 P(ξ 2 4 k)p(ξ 1 = k) k=3 P(ξ 2 1) = 4239% = 18369% ( ) 20 P(ξ 1 = 3) = = 19012% 3 ( ) 20 P(ξ 1 = 4) = = 8978% 4 (n 1 + n 2 )P((ξ 1 + ξ 2 c 2 ) (ξ 1 > c 1 )) = 50( ) = 1936
25 Lösning: tredje termen P((ξ 1 r 1 ) (ξ 1 + ξ 2 > c 2 )) = P(ξ 1 + ξ 2 5) 4 = P(ξ 1 5) + P(ξ 2 5 k)p(ξ 1 = k) k=3 P(ξ 1 = 3) = 19012%, P(ξ 1 = 4) = 8978% P(ξ 1 5) = 1 P(ξ 1 4) = = 43% P(ξ 2 5 3) = 1 P(ξ 2 1) = 8163% P(ξ 2 5 4) = 1 P(ξ 2 0) = 9576% P((ξ 1 r 1 ) (ξ 1 + ξ 2 > c 2 )) = = 2843% N = 2843
26 Exempel: dubbel provtagningsplan Antag provtagningsplanen n 1 = 20, n 2 = 30, c 1 = 2, r 1 = 5, c 2 = 4, r 2 = 5 Partiet består av N = 1000 enheter Vad blir ATI (p = 10%)? Lösning: ATI (01) = = 29978
27 Genomsnittlig utgående kvalitet Man kan också vara intresserad av den genomsnittsliga utgående felkvoten (Hur många fel kunderna upptäcker) Detta säger någonting om hur eektiv kvalitetsstyrningen har varit Denition: Genomsnittlig utgående kvalitet AOQ(p) = genomsnittslig utgående kvalitet (Average Outgoing Quality) Förväntad sannolikhet att en enhet är trasig hos de enheter som skickas vidare efter kvalitetskontrollen AOQ(p) = n k=0 D k N P(d = k acceptera) Detta värde blir samma oavsett om man väljer att allkontrollera alla avvisade partier eller bara slänga dem
28 Det nns approximativa formler för både enkel- och dubbel-provtagningsplan Enkel provtagningsplan Dubbel provtagningsplan AOQ(p) pl(p) N n AOQ(p) p N n 1 N A 1 + p N n 1 n 2 N A 1 = P(ξ 1 c 1 ) N A 2 A 2 = P((c 1 < ξ 1 < r 1 ) (ξ 1 + ξ 2 r 2 ))
29 Problem: 124 a) Antag att du har en enkel provtagningsplan n = 80, c = 3 Partistorleken är 1000 enheter Beräkna den genomsnittsliga utgående kvaliteten vid en ingående felkvot på 5%
30 Problem: 124 a) Antag att du har en enkel provtagningsplan n = 80, c = 3 Partistorleken är 1000 enheter Beräkna den genomsnittsliga utgående kvaliteten vid en ingående felkvot på 5% Lösning: 124 a) Enligt denition: AOQ(p) = c D k k=0 P(ξ = k) = {binomial approximation} = N 3 k=0 (005 k )( ) k k = 205% N k Enligt approximation: AOQ(p) 005 L(005) = ( ( ) ) i=0 005i i 920 = i = 1969%
31 Maximal genomsnittlig utgående kvalitet Ett stort AOQ värde är dåligt (mer defekta enheter) AOQL är det största AOQ värdet som kan fås för given provtagningsplan Denition: Gränsen för genomsnittlig utgående kvalitet AOQL = gränsen för genomsnittslig utgående kvalitet (Average Outgoing Quality Limit) Ingår inte i kursen AOQL = max AOQ(p) 0 p 1
32 Acceptanskontroll enligt variabelmetoden Tidigare: (godkänd eller defekt) Om kontrollen innebär att man mäter någonting och får ett kvantitativt värde, då får man mer information än bara sant/falskt Givet vissa antaganden kan man dra slutsatser med mindre antal mätningar än för attributmetoden eftersom man fått den här extra informationen Mätningarna antas fördelad som någon sannolikhetsfördelning med okända parametrar (typiskt normalfördelning) Parametrarna skattas från mätningarna Sannolikheten att ett värde är oacceptabelt högt/lågt räknas ut med hjälp av sannolikhetsfördelningen Ingår inte i kursen
33 Sammanfattning av dagens innehåll Genomsnittsligt provuttag (ASN(p)) Genomsnittsligt antal kontrollerade enheter per parti Fördelen med dubbel provtagningsplan framför enkel är att ASN kan göras mindre Genomsnittslig kontrollomfattning (ATI (p)) Om man antar allkontroll av avvisade partier ATI beskriver det genomsnittsliga antalet enheter som måste kontrolleras Genomsnittslig utgående kvalitet (AOQ(p)) Sannolikheten att en slumpmässigt vald enhet är defekt efter att den gått igenom kvalitetskontrollen
LMA521: Statistisk kvalitetsstyrning
Föreläsning 3 Föregående föreläsning Dubbel provtagningsplan Tabeller för Dubbel provtagningsplan Dagens innehåll 1 Genomsnittsligt provuttag 2 Genomgång av problem 116 från boken 3 Genomsnittslig kontrollomfattning
LMA521: Statistisk kvalitetsstyrning
Föreläsning 4 Föregående föreläsning Genomsnittsligt provuttag Genomsnittslig kontrollomfattning Genomsnittslig utgående kvalitet Dagens innehåll Övningar 1 Problem SK 122 2 Problem 8 Tenta 160113 Problem:
LMA521: Statistisk kvalitetsstyrning
Föreläsning 1 Dagens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från boken.
LMA522: Statistisk kvalitetsstyrning
Föreläsning 1 Föreläsningens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från
LMA522: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
LMA521: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen
Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll
LMA522: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
LMA521: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Tillämpad matematisk statistik LMA521 Tentamen
Tillämpad matematisk statistik LMA521 Tentamen 20190115 Tid: 8.30-12.30 Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen Tabell- och formelsamling i matematisk statistik, försöksplanering
LMA521: Statistisk kvalitetsstyrning
Föreläsning: Kapabilitet Föregående material Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram
LMA521: Statistisk kvalitetsstyrning
Föreläsning 7 Föregående föreläsningar Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram Dagens
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
F10 Problemlösning och mer om konfidensintervall
1/13 F10 Problemlösning och mer om konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 22/2 2013 2/13 Dagens föreläsning Problemlösning Skattningar Konfidensintervall
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00
Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
Matematisk statistik LKT325 Tentamen med lösningar
Matematisk statistik LKT325 Tentamen 2018-04-06 med lösningar Tid: 8.30-12.30. Tentamensplats: Lindholmen Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen Tabell- och formelsamling
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-06-02 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mikael Stenlund Examinator:
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA Matematisk statistik, Tentamen består av åtta uppgifter motsvarande totalt poäng. Det krävs minst poäng för betyg, minst poäng för 4 och minst 4 poäng för. Examinator: Ulla Blomqvist, ankn
LKT325/LMA521: Faktorförsök
Föreläsning 2 Innehåll Referensfördelning Referensintervall Skatta variansen 1 Flera mätningar i varje grupp. 2 Antag att vissa eekter inte existerar 3 Normalfördelningspapper Referensfördelning Hittills
Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):
EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR
7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR Några sannolikhetsfördelningar förekommer ofta i tillämpade problem. Eftersomdeförekommeroftahardefåttspeciellanamn. Idettakapitelskallvi studera två
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
LMA201/LMA521: Faktorförsök
Föreläsning 1 Innehåll Försöksplanering Faktorförsök med två nivåer Skattning av eekterna. Diagram för huvudeekter Diagram för samspelseekter Paretodiagram Den här veckan kommer tillägnas faktorförsök.
Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen
Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen 2019-03-18 Tid: 8.30-12.30. Tentamensplats: Lindholmen Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 14 13 december 2016 1 / 20 Idag χ 2 -metoden Test av given fördelning Homogenitetstest 2 / 20 Idag χ 2 -metoden Test av given fördelning
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2015-08-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,
Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
F9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
Mer om konfidensintervall + repetition
1/14 Mer om konfidensintervall + repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/2 2011 2/14 Dagens föreläsning Skattningar som slumpvariabler Väntevärde Varians
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011
Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:
Svar till gamla tentamenstal på veckobladen
Svar till gamla tentamenstal på veckobladen Data/Eletro 4 A Patienten är ett allvarligt fall B Patienten är under 4 år C Någon av patientens föräldrar har diabetes 8 + + + + + 8 + a) P(A).4 och P(C).8
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
TAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning p-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/36
Övningstentamen 2 Uppgift 1: Uppgift 2: Uppgift 3: Uppgift 4: Uppgift 5: Uppgift 6: i ord
Övningstentamen Uppgift : I en kvalitetskontroll är det fyra olika fel A, B, C och D som kan förekomma oberoende av varandra där P(A) 0.03, P(B) 0.05, P(C) 0.07 och P(D) 0.. a. Beräkna sannolikheten att
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Föreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola
TAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
TENTAMEN Datum: 14 feb 2011
TENTAMEN Datum: 14 feb 011 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF1001 TEN 1 (Matematisk statistik ) Ten1 i kursen HF1001 ( Tidigare kn 6H301), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 13:15-17:15
TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test
TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö8
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2
Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Matematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Tentamen i Statistik, STA A13 Deltentamen 1, 4p 27 mars 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 7 mars 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
TAMS65 - Föreläsning 12 Test av fördelning
TAMS65 - Föreläsning 12 Test av fördelning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö12 1/37 Det
Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Övningstentamen 1. c) Beräkna sannolikheten att exakt en av A eller B inträffar (6 poäng)
Övningstentamen Uppgift : Vid ett experiment kan en händelse A, en händelse B eller både A och B inträffa. I en serie om 00 försök har man sammanställt följande statistik: i 90 fall har minst en av A eller
SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Studietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 5Hp 41I12B KINAF13, KINAR13, KINLO13,KMASK13 7,5 högskolepoäng Tentamensdatum: 30 oktober
TAMS65 - Föreläsning 12 Test av fördelning
TAMS65 - Föreläsning 12 Test av fördelning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö12 1/37 Det
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Tentamen i matematisk statistik (92MA31, STN2) kl 08 12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Föreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Övningstentamen 2 5.44 5.39 5.41 5.35 5.41 5.46 5.40 5.37 5.39 5.43
Övningstentamen Uppgift 1: Företaget Holly Suger Co tillverkar sockerbitar. Med hjälp av kvalitetskontrollerna upptäcker man att 1% av sockerbitarna är defekta. Anta att man väljer ut 3 sockerbitar från
Övningstentamen i matematisk statistik
Övningstentamen i matematisk statistik Uppgift : Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens Någon förälder med
Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet