Beskrivande statistik
|
|
- Martin Axelsson
- för 8 år sedan
- Visningar:
Transkript
1 Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor få en grov inställning som man sedan kan justera. Vi ser att antalet olyckor hoppar lite upp och ner. Vi har några värden som avviker. För att få en samlad bild av utvecklingen kan man beräkna medelvärdet. Medelvärde Om vi går tillbaka till statistikeditorn kan vi enkelt göra den beräkningen. Placera då markören i första raden i kolumn L3 t.ex., och tryck på. Välj MA på översta raden. Ett sätt att få en bild av hur antalet olyckor har förändrats är naturligtvis att rita ett tidseriediagram. Man matar då in data i två listor. Sedan går man till diagraminställningen och väljer följande inställning: Då får du uppsättning på beräkningar du kan göra på listor. Välj nu 3:medel och skriv så här: Nu kan vi plotta diagrammet. Man får tänka på att ha en bra fönsterinställning som passar våra data. Gå till och ställ in. Om man trycker på och väljer Zoomstat kan man 1
2 Tryck på och du får en beräkning av medelvärdet. alla värden har frekvensen 1 så delar vi in data i grupper eller klasser. Vi gör en klassindelning. Diagraminställningen ser ut så här: Nu kan vi lägga in medelvärdet i diagrammet genom att i editorn för funktioner (tryck på ) skriva Y1=26. Vi ska alltså rita histogram. Data ligger i lista L2 och varje värde förekommer en gång. Nu kommer vi till en viktig sak: vi måste ställa in bredden på klasserna. Säg att vi vill räkna hur många gånger vi hade olyckor. Det betyder att vi ska ha en klassbredd på 5. Då ställer vi in vårt fönster så här: Vi ser att vi har ett ungefär lika många värden över som under medelvärdet. Medelvärdet säger ju bara hur många olyckor det har varit i genomsnitt. Vi återkommer till detta. Ett sätt att sammanställa våra data är att göra en frekvensindelning, dvs. titta på under hur många år som det t.ex. var mellan 15 och 20 olyckor. Man kan då visa frekvensindelningen genom att rita histogram. Om vi ritar histogrammet så att varje förekommande värde ska visas så blir det så här: Det viktiga här är att vi anger Xskl till 5. Nu kan vi plotta histogrammet. Vi ser t.ex. att värdet 30 förekommer 4 gånger. Då det är många staplar och nästan Vi få tre värden i intervallet 15-20, dvs. värdena 15, 16, 17, 18 eller 19 förekommer 3 gånger. 20 tillhör nästa klass. 2
3 Om vi lägger in alla data som punkter i diagrammet så ser det ut enligt nedan. Lika värden staplas på varandra. Sådana diagram kallas punktdiagram. Räknaren kan inte plotta punktdiagram utan vi har använt ett speciellt räknarprogram för detta. Titta på första stapeln. Där har vi tre värden. De värden som ligger på gränsen tillhör nästa klass. Där ska vi ha värden 20, 21, 22, 23 och 24. Enligt stapeln så ska det vara 5 st och om du räknar punkterna fram till den högra gränsen så blir det också 5 st. Vi kan ställa om klassbredden till 10 och rita staplar för intervallen 10-20, 20-30, En frekvenstabell skulle då se ut så här: olyckor frekvens 10 x x x 40 8 Histogrammet är ju en grafisk frekvenstabell. Hur gör man om vi bara har tillgång till frek venstabellen ovan och ska beräkna medelvärdet? Då får man använda något som kallas klassmitten. Man tänker sig att alla inom en viss klass ligger i mitten. I klasserna ovan skulle det då bli 14, 24 och 34. Första klassen innehåller ju värdena 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 och det mittersta värdet är ju medelvärdet av de två i mitten, dvs. 14,5. Nu beräknar vi medelvärdet Då blir fönsterinställningen så här: Vi får ett värde som ligger lite högre än det verkliga medelvärdet, som är 26. Diagrammet blir så här: Om vi istället har 5 klasser enligt diagrammet i vänstra spalten så får vi följande frekvenstabell: 15 x x x x x 40 2 Första klassen innehåller värdena 15, 16, 17, 18, ligger alltså i mitten. Du har 9 värden i intervallet Observera att värdet 30 (förekommer 4 gånger) hör till nästa klass. Vi kan räkna ut det i statistikeditorn så här: Vi har klassmitten i kolumn L3 och frekvenserna i kolumn L4. På rad L5(1) skriver vi sedan 3
4 Pröva gärna detta! Median Nu har vi beräknat medelvärdet på olika sätt. Det finns ett annat mått, median, som är det värde som ligger i mitten om man sorterar alla värden. Om det är ett jämnt antal värden så tar man medelvärdet av de två talen i mitten. Medianen räknar man ut så här på räknaren: Vi får resultatet 26,75. Man kan också direkt göra en beräkning av medelvärdet om man har en frekvenstabell: Medelvärde och median är ganska lika. Det finns en särskild diagramform, lådagram, som visar medianen på ett mycket tydligt sätt. Vi ställer alltså om diagramplottningen till lådagram. Man skriver alltså in i vilken lista man har klassmitten och frekvensen av data i intervallet. Vanligtvis tänker man sig att man har data som kan anta alla värden inom ett intervall och då brukar man använda klassmitten som medelvärdet i intervallet. I vårt exempel har vi heltalsvärden. Antalet olyckor kan ju bara vara hela tal. Intervallet 15 x 20 har då klassmitten 17,5. Man gör på motsvarande sätt om man ska rita ett histogram. Då blir diagraminställningen så här: Dags att plotta! Vi ser en låda med två utstickare. Ytterkanterna på dessa visar det minsta resp. största värdet. Lådans kanter visar övre gränsen för de 25 % minsta värdena och undre gränsen för de 25 % största. Dessa värden kallas kvartiler. Se nästa sida! 4
5 Med kan man spåra i diagrammet och avläsa minsta värde, den undre kvartilen, medianen, den övre kvartilen och det största värdet. Medianen är strecket inne i lådan. Till vänster och höger om detta streck ligger 50 % av observationerna. Se bilden nedan. Lådan i mitten är alltså de 50 % som ligger i mitten. Tänk er nu att vi ändrar det största värdet (37) till 100. Vi lägger då in en ny lista i lista L3 som innehåller samma värden utom för år Nu ritar vi lådagram för båda listorna. Medelvärdet har höjts med drygt 3. Både medelvärde och median är mått som används för att visa det genomsnittliga värdet. I vissa fall är medelvärde att föredra och i andra fall medianvärdet. Medianen kan vara ett lämpligt mått om data har en sned fördelning med många höga eller låga värden. I motsats till medelvärdet påverkas inte medianen av sådana extremvärden. Ett exempel när där medianen är ett bättre mått är t.ex. inkomster. Många har låga eller medelhöga inkomster och ett fåtal har höga eller mycket höga inkomster. Ett medelvärde skulle i detta fall ge en missvisande bild eftersom de med höga inkomster drar upp medelvärdet. Vi tar ett exempel. Vi tänker oss att en grupp människor har följande inkomster. Se lista L3 nedan. De två nedersta inkomsterna är alltså väldigt höga. Vi ser att medianen inte ändras. Den är fortfarande 26,5. Vad händer med medelvärdet? Vi kontrollerar. Vi beräknar nu medelvärde och median. 5
6 Att ange medelinkomsten är ju här missvisande. Medianen är ett bättre mått. När man har en sådan här sned fördelning kan man plotta diagrammet så här: Spridning Vi har nu gått igenom hur man med räknaren kan beräkna medelvärden och medianer. De är båda s.k. lägesmått, dvs. mått som på något sätt visar var tyngdpunkten ligger. Nu är man ju också intresserad av att beräkna ett mått på spridningen i datamaterialet. Ta t.ex. följande enkla exempel. A: B: Båda datauppsättningarna har medelvärdet och medianen 2000 men är spridningen lika? Då måste vi först definiera vad spridning är. Vi gick ju egentligen igenom spridning när vi ritade lådagram. Lådans kanter talar om var 50 % av datamaterialet ligger och de vågräta strecken anger hur långt det är mellan det lägsta till högsta värdet. Det kallas för variationsbredd. Nu vill vi på något sätt skaffa oss ett mått på den typiska eller genomsnittliga avvikelsen är från medelvärdet. Ett sådant värde kallas för standardavvikelse. Definition För värden x 1, x 2,, x n med medelvärde x är standardavvikelsen s ( x1 x) ( x x) n n Man ställer då in diagramvisningen så här: Det här ser ju krångligt ut men vi faktiskt ganska enkelt göra beräkningen på räknaren. Först beräkningarna avvikelsen frånmedelvärdet i kvadrat. Se formeln. De två yttervärdena visas då som två punkter och är värden som ligger långt ifrån lådans kanter. Sådana värden kallas utliggare. 6
7 Det blir så här: Vi får då samma värde. Ändra nu värdet nu det största värdet i lista L2 igen från 37 till 100. Vilken standardavvikelse får du då? Medelvärde och standardavvikelse är viktiga mått när man studerar s.k. normalfördelningar och när man ska dra statistiska slutsatser från ett slumpmässigt urval av data. Nu tar vi roten ur summan av avvikelserna och dividerar med antalet värden -1. Tryck på. Vi får att standardavvikelsen blir 6,1. Nu kan vi ju direkt beräkna detta med räknarens inbyggda funktion. Skriv då enligt nedan. 7
Medelvärde, median och standardavvikelse
Medelvärde, median och standardavvikelse Detta är en enkel aktivitet där vi på ett dynamiskt sätt ska titta på hur de statistiska måtten, t.ex. median och medelvärde ändras när man ändar ett värde i en
2 Dataanalys och beskrivande statistik
2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att
Valresultat Riksdagen 2018
Valresultat Riksdagen 2018 I ämnesplanerna i matematik betonas att eleverna ska få möjlighet att använda digitala verktyg. Ett exempel från kursen Matematik 2 är Statistiska metoder för rapportering av
Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.
Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median
Arbeta med normalfördelningar
Arbeta med normalfördelningar I en större undersökning om hur kvinnors längd gjorde man undersökning hos kvinnor i ett viss åldersintervall. Man drog sedan ett slumpmässigt urval på 2000 kvinnor och resultatet
Föreläsning 1. 732G60 Statistiska metoder
Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt
13.1 Matematisk statistik
13.1 Matematisk statistik 13.1.1 Grundläggande begrepp I den här föreläsningen kommer vi att definiera och exemplifiera ett antal begrepp som sedan kommer att följa oss genom hela kursen. Det är därför
Grundläggande statistik kurs 1
Grundläggande statistik kurs 1 Problem 1 Arbeta med frekvenstabeller Sid 2: Så här ser sidan 2 ut. Vi har alltså en delad sida med kalkylbladet till vänster och en Data&Statistik-sida till höger. I den
Arbeta med verkliga data.
Arbeta med verkliga data. Tabellen nedan visar koldioxidhalten i atmosfären i ppm (parts per million) från år 1959 och fram till 2015. Data är årsmedelvärden och de är uppmätta vid den meteorologiska stationen
KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera)
KLEINLEKTION Område statistik. Lämplig inom kurserna Matematik 2b och 2c. Centralt innehåll i Matematik 2b och 2c: Statistiska metoder för rapportering av observationer och mätdata från undersökningar
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?
11. DESKRIPTION EN VARIABEL
11. DESKRIPTION EN VARIABEL 11.1 Inledning I detta och nästa två kapitel introduceras en enkel typ av dataanalys kallad deskription. Deskription innebär att mer informellt presentera en observerad empirisk
Arvodesenkät. Resultat 2014. Egenföretagare. www.dik.se/lonestatistik
Resultat 2014 Egenföretagare Arvodesenkät www.dik.se/lonestatistik DIK:s arvodesstatistik för egenföretagare baseras på en årlig enkät som vänder sig till förbundets medlemmar som angett att de bedriver
Beskrivande statistik
Beskrivande statistik Sorina Barza Department of Mathematics, Karlstad University, Sweden October 5, 2010 Vad är beskrivande statistik? Sammanställning av statistiska material Vad är beskrivande statistik?
Bearbetning och Presentation
Bearbetning och Presentation Vid en bottenfaunaundersökning i Nydalasjön räknade man antalet ringmaskar i 5 vattenprover. Följande värden erhölls:,,,4,,,5,,8,4,,,0,3, Det verkar vara diskreta observationer.
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram
Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1
Att göra före det schemalagda labpasset.
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 1 Laborationen avser att illustrera några grundläggande begrepp inom beskrivande statistik och explorativ dataanalys.
En typisk medianmorot
Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt
Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning.
Biostatistik: Begrepp & verktyg Kvantitativa Metoder II: teori och tillämpning Lovisa.Syden@ki.se BIOSTATISTIK att hantera slumpmässiga variationer! BIO datat handlar om levande saker STATISTIK beskriva
11. DESKRIPTION EN VARIABEL
11. DESKRIPTION EN VARIABEL 11.1 Inledning I detta och nästa två kapitel introduceras en enkel typ av dataanalys kallad deskription. Deskription innebär att mer informellt presentera en observerad empirisk
Beskrivande statistik Kapitel 19. (totalt 12 sidor)
Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande
F4 Beskrivning av ett datamaterial. Val av diagram, lägesmått och spridningsmått.
Tabellering av kvalitativ variabel En variabel varierar över ett antal kategorier. F4 Beskrivning av ett datamaterial. Val av diagram, lägesmått och spridningsmått. T ex, individer är kvinnor eller män.
Det är tänkt att varje elev eller grupp ska få en egen kopia av provresultaten och en egen datablankett att fylla i.
Aktivitetsbeskrivning Denna aktivitet går igenom grundläggande statistikhantering på en grafräknare. De olika läges- och spridningsmåtten bör åtminstone delvis redan vara bekanta för eleverna. Aktiviteten
Forskningsmetodik 2006 lektion 2
Forskningsmetodik 6 lektion Per Olof Hulth hulth@physto.se Slumpmässiga och systematiska mätfel Man skiljer på två typer av fel (osäkerheter) vid mätningar:.slumpmässiga fel Positiva fel lika vanliga som
Stora talens lag eller det jämnar ut sig
Stora talens lag eller det jämnar ut sig kvensen för krona förändras när vi kastar allt fler gånger. Valda inställningar på räknaren Genom att trycka på så kan man göra ett antal inställningar på sin räknare.
Introduktion till statistik för statsvetare
Olika figurer Stockholms universitet September 2011 Olika typer av data Olika figurer Data nominal, ordinal, intervall och kvot Nominaldata Ordinaldata Intervalldata Kvotdata Med data menar vi jämförbara
6-2 Medelvärde och median. Namn:
6-2 Medelvärde och median. Namn: Inledning Du har nu lärt dig en hel del om datainsamling och presentation av data i olika sorters diagram. I det här kapitlet skall du studera hur man kan karaktärisera
Föreläsning G70 Statistik A
Föreläsning 1 732G70 Statistik A 1 Population och stickprov Population = den samling enheter (exempelvis individer) som vi vill dra slutsatser om. Populationen definieras på logisk väg med utgångspunkt
*****************************************************************************
Statistik, 2p ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp när/om
Liten handledning i Excel och StarOffice Calc i anslutning till Datorövning 1
STOCKHOLMS UNIVERSITET 2004-11-04 MATEMATISK STATISTIK Sannolikhetslära och statistik för lärare Liten handledning i Excel och StarOffice Calc i anslutning till Datorövning 1 Programmet StarOffice Calc
F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel
ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp när/om ni tycker att
Statistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.
Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng
Kognitiv psykologi Moment 1: Statistik, 3 poäng VT 27 Lärare: Maria Karlsson Deskription (Kapitel 2 i Howell) Beskrivande mått, tabeller och diagram 1 2 Tabeller Tabell- och kolumnrubriker bör vara fullständiga
Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
Extramaterial till Matematik X
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ ETT Statistik ELEV Du kommer nu att få bekanta dig med Google Kalkylark. I den här uppgiften får du öva dig i att skriva in
Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar
Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik
Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-12-22 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Jour: Robert Lundqvist,
Förra gången (F4-F5)
F6 Standardiseringsmetoder Etiska regler och lagregler Förra gången (F4-F5) Lägesmått: aritmetiskt medelvärde (minst intervall), median (minst ordinal), typvärde (alla nivåer) När vi vill beskriva tyngdpunkten
732G01/732G40 Grundläggande statistik (7.5hp)
732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.
Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor
Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta
Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010
v. 2015-01-07 ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp
ÖVNINGSUPPGIFTER KAPITEL 2
ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Exponentiell och annan utveckling -exempel med konsumentpriser
Exponentiell och annan utveckling -exempel med konsumentpriser Konsumentprisindex (KPI) är det mest använda måttet för prisutveckling och används bl.a. som inflationsmått. KPI avser att visa hur konsumentpriserna
Datorövning 1 Statistik med Excel (Office 2010, svenska)
Datorövning 1 Statistik med Excel (Office 2010, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 1 i 5B1512, Grundkurs i matematisk statistik för ekonomer Namn:........................................................ Elevnummer:.............. Laborationen syftar till ett ge information
Beräkningar och diagram i EQUALIS resultatsammanställningar. P016 v
Innehåll Introduktion... 2 EQUALIS resultatsammanställningar... 3 Diagram i EQUALIS resultatrapporter... 4 Statistiska grundbegrepp... 6 Referenser... 7 Introduktion EQUALIS arrangerar program för extern
Statistik. Berit Bergius & Lena Trygg, NCM
Modul: Didaktiska perspektiv på matematikundervisningen 2 Del 3: Geometri och statistik Statistik Berit Bergius & Lena Trygg, NCM Bakåt i tiden förmedlades information muntligt, från man till man. När
Studieplanering till Kurs 2b Grön lärobok
Studieplanering till Kurs 2b Grön lärobok Den här studieplaneringen hjälper dig att hänga med i kursen. Planeringen följer lärobokens uppdelning i kapitel och avsnitt. Ibland får du tips på en inspelad
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Sociologi GR (A) Sociologisk Metod Examination #2 Peter Axelsson. N Minimum Maximum Mean Std. Deviation
Uppgift 1 Vikt Vikt är en variabel på kvotskalan. Det gör att vi kan räkna med aritmetiskt medelvärde (m) som centralmått (Djurefeldt, 2003:59). Medelvärdet är 35,85 kg. Det saknas värden för två observationer,
Datorövning 1 Statistik med Excel (Office 2007, svenska)
Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Sju sätt att visa data. Sju vanliga och praktiskt användbara presentationsformat vid förbättrings- och kvalitetsarbete
Sju sätt att visa data Sju vanliga och praktiskt användbara presentationsformat vid förbättrings- och kvalitetsarbete Introduktion I förbättringsarbete förekommer alltid någon form av data, om inte annat
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-08-23 Skrivtid 0900 1400 Tentamen i: Statistik 1, Undersökningsmetodik 7.5 hp Antal uppgifter: 6 Krav för G: 14 Lärare:
Medicinsk statistik I
Medicinsk statistik I Läkarprogrammet T5 VT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Medicinsk statistik Varför behöver Ni kunskap i medicinsk statistik? Självständigt arbete Framtida
F2 Beskrivning av ett datamaterial. Tabellering och val av diagram. Summatecknet
F2 Beskrivning av ett datamaterial. Tabellering och val av diagram. Summatecknet Tabellering av kvalitativ variabel En kvalitativ variabel varierar över ett antal kategorier. Antag att vi har observerat
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,
Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,
2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel
Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram
Histogram, pivottabeller och tabell med beskrivande statistik i Excel
Histogram, pivottabeller och tabell med beskrivande statistik i Excel 1 Histogram är bra för att dem på ett visuellt sätt ger oss mycket information. Att göra ett histogram i Excel är dock rätt så bökigt.
Datorövning 1 Statistik med Excel (Office 2007, svenska)
Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
Tentamen på. Statistik och kvantitativa undersökningar STA100, 15 HP. Ten1 9 HP. 19 e augusti 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 HP Ten1 9 HP 19 e augusti 2015 Tillåtna hjälpmedel: Miniräknare
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-06-05 Skrivtid 0900 1400 Tentamen i: Statistik 1, Undersökningsmetodik 7.5 hp Antal uppgifter: 6 Krav för G: 12 Lärare:
Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift
Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology Mars 23, 2015 Lärare och kurslitteratur : Rum: E-mail: Anders Hildeman: Rum: E-mail: Kursansvarig och föreläsare H3018
Repetitionsprov inför provet Statistik
Repetitionsprov inför provet Statistik Del 1 Med miniräknare Endast svar krävs! 1. I en skolklass mättes sju elevers skostorlek. Detta visas i tabellen nedan: 37 41 43 39 45 47 38 a) Ange de sju skostorlekarnas
ÖVNINGSUPPGIFTER KAPITEL 2
ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology August 29, 2016 Lärare : Rum: E-mail: Anders Hildeman: Rum: E-mail: Sandra Eriksson Barman: Rum: E-mail: Kursansvarig
Statistiska begrepp och uttrycksformer
Kristina Juter Statistiska begrepp och uttrycksformer Statistik är ett matematikinnehåll som inbjuder till såväl tematiskt arbete som ämnesintegrerat. Redan i statistikens historiska barndom insåg man
Introduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
Kvantitativ strategi Univariat analys 2. Wieland Wermke
+ Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde
Extramaterial till Matematik X
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ TVÅ Sannolikhet ELEV Du kommer nu att få bekanta dig med Google Kalkylark. I den här uppgiften får du öva dig i att skriva
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Statistiska samband: regression och korrelation
Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera
Matematik 2b 1 Uttryck och ekvationer
Matematik 2b 1 Uttryck och ekvationer Repetera grunderna i ekvationslösning Lära dig parentesmultiplikation, kvadreringsreglerna och konjugatregeln Lära dig lösa fullständiga andragradsekvationer Få en
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Värdena för en diskret variabel (med få värden) kan redovisas i en tabell över frekvensfördelningen, dvs antalet observationer för de olika värdena.
Deskriptiv statistik De enskilda uppgifterna i ett statistiskt material innehåller all tillgänglig information men behöver oftast sammanfattas och förenklas på något sätt. Detta kan göras i form av tabeller,
Piteås kunskapsresultat jämfört med Sveriges kommuner 2015/2016
1 Piteås kunskapsresultat jämfört med Sveriges kommuner 2015/2016 Utbildningsförvaltningen 0911-69 60 00 www.pitea.se www.facebook.com/pitea.se 2 Syfte Syftet med rapporten är att ge ett övergripande jämförelse
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag
Gamla tentor (forts) ( x. x ) ) 2 x1
016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån
Medicinsk statistik I
Medicinsk statistik I Läkarprogrammet T5 VT 2013 Susanna Lövdahl, Msc, Doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Medicinsk statistik VT-2013 Tre stycken
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Beskrivande statistik SDA l, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-06-04 Skrivtid 0900 1400 Tentamen i: Statistik 1, Undersökningsmetodik 7.5 hp Antal uppgifter: 5 Krav för G: 15 Lärare:
MA1S TATISTIK UPPGIFTER
1. Ett antal familjer svarade på frågan: Hur många datorer har Ni i Er familj? Resultatet visas i diagrammet. A) Bestäm typvärdet och medianen. B) Bestäm medelvärdet. 2. Diagrammet visar antalet syskon
En introduktion till och första övning i @Risk5 for Excel
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab
FK2002- FK2004 (HT2011)
FK2002- FK2004 (HT2011) Datorövning 2 - Självständigt arbete med assistent Under denna dataövning arbetar vi med histogram i OpenOffice Cal och undersöker effekten av olika binstorlekar. I slutet lägger
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 10 e januari 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Kvantitativ forskning C2. Viktiga begrepp och univariat analys
+ Kvantitativ forskning C2 Viktiga begrepp och univariat analys + Delkursen mål n Ni har grundläggande kunskaper över statistiska analyser (univariat, bivariat) n Ni kan använda olika programvaror för
MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus
MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Diagnos Sannolikhet/Statistik
1. Stapeldiagrammet nedan visar resultatet av riksdagsvalet 2010. a) Vilka politiska partier motsvaras av de två största staplarna? Om du är osäker på svaren eller vill veta mera om valresultatet finns