Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013
|
|
- Lisa Karlsson
- för 7 år sedan
- Visningar:
Transkript
1 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari / 1
2 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process i diskret tid Markovkedja - Diskret process i diskret tid Slumpvandring - Diskret process i diskret tid Vi ska se hur man utifrån slumpvandringsprocessen slutligen definierar en Brownsk Rörelse - en kontinuerlig process i kontinuerlig tid. 2 / 28
3 Slumpvandringsmodellen Vi har hittills modellerat en slumpvandring som: Y t = Y t 1 + a t (1) Värdet idag är lika med gårdagens värde plus en felterm. Som vi såg under föreläsning 7, kan man utveckla (1) så att: Y t = Y 0 + n t=1 där a t N(0, σ 2 a), dvs stokastiska feltermer som är vitt brus. Obs! I fortsättningen kommer vi att beteckna alla tidsserier med X t och inte Y t, precis som i kompendiet. a t 3 / 28
4 Slumpvandring - definition Generellt definieras en slumpvandring som en stokastisk process X 1, X 2,..., X n : n X t = där vi antar att startvärdet för processen X 0 = 0 och där W 1, W 2,..., W t är oberoende stokastiska variabler med samma föredelning. Denna definition överensstämmer med (1) då vi sätter W t = a t och X 0 = 0. t=1 W t 4 / 28
5 Slumpvandring - definition Enligt definitionen för slumpvandringen gäller att: Värdet för processen W t = w t vid tidpunkt t är lika med den kumulativa summan av alla w t Utfallet på W t vid tidpunkten t = n följer markovvillkoret. Dvs, tidigare utfall w 1, w 2,..., w n 2 påverkar inte w n. W t kan därför modelleras som en markovkedja. 5 / 28
6 Slumpvandring - simulering av 50 observationer Diagrammet visar en simulering av en slumpvandring X t = n t=1 W t där W t N(0, 1) och t = 1, 2,..., / 28
7 Slumpvandring - simulering av 50 observationer Diagram över 50 simuleringar av en slumpvandring X t, där t = 50 observationer. Varje simulering ger upphov till en unik realisering. Gemensamt är att de utgår ifrån X 0 = 0. 7 / 28
8 Slumpvandring Som man kan se i diagrammet så är värdet av ungefär hälften av alla realiseringar > X 0 och hälften < X 0 vid varje t. Detta kan generaliseras: Sannolikheten att röra sig upp och ned i processen vid varje t är 50% oavsett X 0. X 0 är endast en referenspunkt (eller förskjutningen) för processen. T.ex. är P(X t = 2 X 0 = 0) detsamma som P(X t = 4 X 0 = 2) 8 / 28
9 Enkel slumpvandring Ett specialfall av en slumpvandring är då W t antingen går upp ett steg eller ned ett steg vid en specifik (diskret) tidpunkt t = n. Detta kallas en enkel slumpvandring och W t antar i detta fall endast värdena ±1 med sannolikheterna: P(W t = 1) = p P(W t = 1) = 1 p = q Vad som är viktigt att komma ihåg är att slumpvandringen X t i sig inte varierar mellan dessa två värden. 9 / 28
10 Exempel på enkel slumpvandring Pär och Pål spelar ett hasardspel mot varandra 10 gånger. Om Pär vinner betalar Pål honom en krona och om Pål vinner betalar Pär honom en krona. Hasardspelet är rättvist då sannolikheterna för vinst vid varje spelomgång är: P(Pär vinner) = P(Pål vinner) = 1 2 Eftersom W t = { 1, 1} vid varje t så kan Pärs totala kapital X t modelleras med en enkel slumpvandring. 10 / 28
11 Exempel på enkel slumpvandring Tabellen visar utfallen W t samt totalt kapital X t för spelets 10 omgångar. Spelomgång Utfall Totalt kapital för Pär / 28
12 Exempel på enkel slumpvandring Totalt kapital för Pär: Enkel slumpvandring Y Time 12 / 28
13 Exempel på enkel slumpvandring Utfallsrummet för X efter 10 omgångar är: X 10 = { 10, 8,..., 8, 10} Men varje utfall inträffar inte med samma sannolikhet: Utfallet för W t vid varje t antar antingen 1 eller -1. Utfallen inträffar med en fast sannolikhet p = 1/2. Det slumpmässiga försöket upprepas n = 10 gånger. Sannolikhetsfördelningen för en enkel slumpvandring under dessa förutsättningar är binomial(n, p). 13 / 28
14 Exempel på enkel slumpvandring Täthetsfunktionen för binomialfördelningen skrivs generellt: ( ) n P(X = x) = p x q n x x Om vi definierar W som antalet gånger Pär vinner en omgång av spelet, kan vi beräkna sannolikheten att Pär vinner precis 2 kronor som: ( ) 10 P(X 10 = 2) =P(W = 6) = = / 28
15 Brownsk Rörelse Om vi för en slumpvandring: Tar kortare och kortare steg av längden 1/ n Minskar tidsintervallen för mätningarna med 1/n tidsenheter kommer slumpvandringen att konvergera mot en stokastisk process som kallas Brownsk Rörelse. I fortsättningen kommer en Brownsk Rörelse att betecknas X (t). 15 / 28
16 Brownsk Rörelse En Brownsk Rörelse är en stokastisk process som har fått sitt namn efter Robert Brown baserat på hans studier av pollen. Brown observerade i mikroskop att pollenpartiklar i vatten rörde sig slumpmässigt trots att dessa uppenbarligen inte var vid liv. Han kunde dock inte förklara orsaken till den slumpmässiga rörelsen. Senare visade Einstein att ett stort antal molekyler (ej synliga i Browns mikroskop) i vätskor och i luft ständigt kolliderar med större partiklar, t.ex. ett pollenkorn. Dessa kollisioner gjorde så att pollenkornen i Browns experiment såg ut att röra sig slumpmässigt. 16 / 28
17 Brownsk Rörelse Eftersom pollenkornen hela tiden förflyttar sig slumpmässigt, t.ex. antingen höger eller vänster, kan rörelserna modelleras som en kontinuerlig enkel slumpvandring, dvs en Brownsk Rörelse. Trots att fenomenet först observerades i naturen, har man på senare tid upptäckt att en mängd ekonomiska och finansiella tidsserier kan modelleras som en Brownsk rörelse. Anledningen är att det på en marknad hela tiden görs kontinuerliga transaktioner vilket förändrar marknadens värde. 17 / 28
18 Brownsk Rörelse - definition En Brownsk rörelse (utan drift) definieras som en process X (t) där: 1 X (0) = 0 2 E(X (t)) = 0 för alla t 3 V (X (t)) = tσ 2 för alla t 4 X (t) är normalfördelade stokastiska variabler X (t) N(0, tσ 2 ) 5 X (t) har oberoende ökningar, dvs. för tidpunkter t 1 t 2 t 3 t 4 gäller oberoende mellan: X (t 2 ) X (t 1 ) och X (t 4 ) X (t 3 ) Processens ökningar kan inte förutspås. Utfallen för en process upp till en viss tidpunkt säger inget om processens fortsatta rörelser. 18 / 28
19 Brownsk Rörelse med drift - definition På liknande sätt har en Brownsk rörelse X (t) med driftterm δ egenskaperna E(X (t)) = tδ för alla t V (X (t)) = tσ 2 för alla t Som för en vanlig Brownsk rörelse så är X (t) normalfördelade stokastiska variabler, nu med fördelningen X (t) N(tδ, tσ 2 ). Dessutom har X (t) oberoende ökningar. 19 / 28
20 Egenskaper för en Brownsk Rörelse Förutom att kunna bestämma väntevärde och varians för ett utfall på den Brownsk Rörelse, kan man även bevisa: Cov(X (t), X (s)) = sσ 2 om s < t Att kovariansen kan definieras på detta sätt gör så att vi lätt kan beräkna egenskaper för linjära kombinationer av X (t) och X (t), t.ex: E(X (t) X (s)) = 0 V (X (t) X (s)) = (t s)σ 2 X (t) X (s) N(0, (t s)σ 2 ) Detta givet att s < t. 20 / 28
21 Att standardisera en Brownsk Rörelse Då en Brownsk rörelse med och utan drift följer en normalfördelning, kan vi beräkna sannolikheter för olika utfall i processen vid specifika tidpunkter. Säg att vi vill hitta sannolikheten att en Brownsk rörelse utan drift i tidpunkt t = n är mindre än ett tal c. Som tidigare är X (0) = 0. Vi söker alltså P(X (n) < c X (0) = 0). Eftersom X (t) N(0, tσ 2 ) är X (t) 0 tσ N(0, 1) Vi kallar X (t) 0 tσ = B(1) så att B(1) N(0, 1). Att standardisera en normalfördelad stokastisk variabel på detta sätt är ett generellt resultat (se s.209 i NCT). 21 / 28
22 Att standardisera en Brownsk Rörelse Givet X (0) = 0 beräknar vi P(X (n) < c) som: ( X (n) 0 P < c 0 ) = P nσ 2 nσ 2 ( B(1) < c ) nσ 2 Om vi skulle veta värdena på c, t och σ skulle vi kunna beräkna sannolikheten. Sätt c = 6, t = 4 och σ = 2: ( X (4) 0 P < c 0 ) ( =P B(1) < 6 ) tσ 2 tσ ( =P B(1) < 6 ) 16 =P(B(1) < 1.5) I tabellen för standard-normalfördelningen tittar vi efter sannolikheten: P(Z < 1.5) = 6.68% 22 / 28
23 Att standardisera en Brownsk Rörelse Om man har en Brownsk rörelse utan drift men med ett annat startvärde än X (0) = 0 kommer processens fördelning att vara: X (t) N((X (0) + 0), tσ 2 ) Skulle vi sätta t.ex X (0) = 2 skulle X (t) N(2, tσ 2 ) Vi söker P(X (n) < c X (2) = 2). 23 / 28
24 Att standardisera en Brownsk Rörelse Givet c = 6, t = 4 och σ = 2 beräknas sannolikheten som: ( X (4) 2 P < c 2 ) ( =P B(1) < 8 ) tσ 2 tσ ( =P B(1) < 8 ) 16 =P(B(1) < 2) =P(Z < 2) = 2.28% 24 / 28
25 Egenskaper för en Brownsk Rörelse Eftersom variansen ökar med tiden, kommer sannolikheten att observera t.ex. P(X (n) < c) bli större då t ökar. Detta är naturligt då antalet realiseringar för processen hela tiden ökar. På så sätt kan X (n) hela tiden anta mer extrema värden. Sätter vi c = 50 kan vi se detta tydligt i diagram 1 på nästa slide. 25 / 28
26 Egenskaper för en Brownsk Rörelse Vi kan se ett exempel på samma tidsserie X (t) men med två olika startvärden, X (0) = 0 och X (0) = 50: Y0=0 Y0=50 y y Time Time Vi kan se att sannolikheter för utfall på processen beror på startvärdet. 26 / 28
27 Att standardisera en Brownsk Rörelse med drift Vi kan också beräkna sannolikheter för en Brownsk Rörelse med driftterm δ. Vi söker P(X (t) < 2). Processens fördelning är X (t) N(tδ, tσ 2 ). Givet δ = 1, t = 4 och σ = 2 samt startvärdet X (0) = 0 får vi att: ( ) ( X (4) tδ 2 tδ P < =P B(1) < 6 ) tσ 2 tσ ( =P B(1) < 6 ) 16 =P(B(1) < 1.5) =P(Z < 1.5) = 6.68% 27 / 28
28 Beräkna moment för en Brownsk Rörelse Vi kan också beräkna momenten för en Brownsk Rörelse om vi vet parametrarnas värden. Beräkna följande för den Brownska Rörelsen med drift på förra sliden: E(X (7)) V (X (7)) Cov(X (7), X (9)) 28 / 28
Finansiell statistik FÖRELÄSNING 11
Finansiell statistik FÖRELÄSNING 11 Slumpvandring Brownsk rörelse 4 maj 2011 14:52 Pär och Pål Pär och Pål spelar ett hasardspel mot varandra upprepade gånger. Pär vinner = Pål betalar en krona. Pål vinner
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
Markovkedjor. Patrik Zetterberg. 8 januari 2013
Markovkedjor Patrik Zetterberg 8 januari 2013 1 / 15 Markovkedjor En markovkedja är en stokastisk process där både processen och tiden antas diskreta. Variabeln som undersöks kan både vara numerisk (diskreta)
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Monte Carlo-metoder. Bild från Monte Carlo
Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde
Stokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Stockholms Universitet Statistiska institutionen Patrik Zetterberg
Stockholms Universitet Statistiska institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, VT2012 2012-05-31 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
Föreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Några extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012
Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Summor av slumpvariabler
1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Statistiska metoder för säkerhetsanalys
F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts
Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Hur måttsätta osäkerheter?
Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för
TMS136. Föreläsning 5
TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
S0005M. Stokastiska variabler. Notes. Notes. Notes. Stokastisk variabel (slumpvariabel) (eng: random variable) Mykola Shykula
Mykola Shykula LTU Mykola Shykula (LTU) 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Mykola Shykula (LTU) 2 / 18 Stokastiska
Simulering av elmarknader. EG2205 Föreläsning 11, vårterminen 2016 Mikael Amelin
Simulering av elmarknader EG2205 Föreläsning 11, vårterminen 2016 Mikael Amelin 1 Kursmål Tillämpa stokastisk produktionskostnadssimulering och Monte Carlo-simulering för att beräkna förväntad driftkostnad
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
Grundläggande matematisk statistik
Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Slumpvariabler och sannolikhetsfördelningar
och sannolikhetsfördelningar Föreläsning 4 Sannolikhet och Statistik 5 hp Fredrik Jonsson April 2010 Översikt 1. Verklighetsanknutna exempel. Definition relativt utfallsrum. 2. Sannolikhetsfördelningar
S0005M, Föreläsning 2
S0005M, Föreläsning 2 Mykola Shykula LTU Mykola Shykula (LTU) S0005M, Föreläsning 2 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Mer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Preliminärt lösningsförslag - omtentamen i Finansiell statistik,
Preliminärt lösningsförslag - omtentamen i Finansiell statistik, 2012-08-22 Uppgift 1a) y x -1 0 1 P(Y = y) -1 1/16 3/16 1/16 5/16 0 3/16 0 3/16 6/16 1 1/16 3/16 1/16 5/16 P(X = y) 5/16 6/16 5/16 1 E[X]
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Föreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
TMS136. Föreläsning 5
TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 8 Johan Lindström 9 oktober 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F8 1/26 process Johan Lindström - johanl@maths.lth.se FMSF45/MASB3
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Bengt Ringnér. October 30, 2006
Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller
Stokastiska Processer
Kapitel 3 Stokastiska Processer Karakteristisk funktion: Den karakteristiska funktionen φ ξ : R n C för en R n -värd s.v. definieras för t R n. φ ξ (t) = E{e iπ(t ξ +...+t nξ n) } = E{e iπtt ξ } Den karakteristiska
4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Fö relä sning 1, Kö system vä ren 2014
Fö relä sning 1, Kö system vä ren 2014 Här följer en mycket kort sammanfattning av det viktigaste i Föreläsning 1. Observera att dessa anteckningar inte kan ersätta läroboken, de är alltför kortfattade
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
TAMS79: Föreläsning 6. Normalfördelning
TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,
Stokastiska vektorer och multivariat normalfördelning
Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska