Fö relä sning 1, Kö system vä ren 2014
|
|
- Malin Ekström
- för 6 år sedan
- Visningar:
Transkript
1 Fö relä sning 1, Kö system vä ren 2014 Här följer en mycket kort sammanfattning av det viktigaste i Föreläsning 1. Observera att dessa anteckningar inte kan ersätta läroboken, de är alltför kortfattade för det. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha med på övningstillfället. Också laborationshandledningarna kommer att finnas på hemsidan. Föreläsningar Kursen innehåller sju föreläsningar. Första veckan är det två föreläsningar, därefter en varje vecka utom under vecka 20. Övningar Övningarna börjar redan vecka 1. Skriv ut övningsmaterialet på hemsidan och ha med till övningen. Laborationer Det är två obligatoriska laborationer. Den första är i vecka 19 och 20, den andra i vecka 20 och 21. Teckningslistor kommer att sättas upp i god tid. Var och när meddelas på kursens hemsida och på föreläsning. Vad ska vi studera i denna kurs? Vi ska titta på betjäningssystem av olika slag. Till ett betjäningssystem kommer kunder som får betjäning av betjänare. Om det inte finns några lediga betjänare så kan kunden ibland vänta i en kö. En kund kan vara en transaktion i en databas, ett mobilsamtal som ska betjänas av ett mobilnät eller http-paket som kommer till en webbserver. Grundproblemet visas i denna figur: Ankomster System Spärrade Kunder kommer till ett system av något slag. Om systemet är fullt så kanske en kund spärras (spärrton när man ringer t ex). Om kunden får komma in i systemet så blir den så småningom färdigbetjänad och kommer ut igen. Vi antar att inga nya kunder skapas inne i systemet. Det är huvudsakligen följande frågor som vi ska behandla i denna kurs: 1. Vad är sannolikheten att en kund spärras? 2. Hur lång tid tillbringar en kund i systemet? 3. Hur många kunder kan systemet betjäna per tidsenhet under vissa bivillkor? Vi definierar några storheter som hör ihop med frågorna ovan:
2 Sannolikheten att en kund spärras eller avvisas P(spärr). Tiden i systemet för en kund som inte har spärrats, T. Detta är i allmänhet en stokastisk variabel och vi är oftast intresserade av att beräkna medelvärde och varians för T. Kallas ofta för svarstid. Genomströmningen, det vill säga hur många kunder per tidsenhet som blir färdigbetjänade i systemet,. Ankomstintensiteten till systemet, det vill säga hur många kunder per tidsenhet som kommer till systemet (både de som avvisas och som får komma in i systemet),. Den effektiva ankomstintensiteten till systemet, det vill säga hur många som per tidsenhet får komma in i systemet, eff. I allmänhet så bildar ankomsterna till ett system en stokastisk process och betjäningstiderna är också slumpmässiga. Därför måste vi använda sannolikhetsteori och teorin för stokastiska processer för att studera betjäningssystem. Några exempel på kösystem Här följer några enkla exempel på betjäningssystem och en modell för dem. Avsnittet visar också hur vi ska rita kösystem med cirklar, pilar och köutrymmen. Webbserver Till en webbserver kommer begäran om att hämta sidor. Dessa betjänas av servern som skickar tillbaka ett antal filer som kan innehålla text och bilder. En modell som enligt mätningar ger bra resultat är så här enkel: Den runda cirkeln är betjänaren, i detta fall processorn i servern. Kunder (i det här fallet begäran om att få se en webbsida) kommer till systemet. Om betjänaren inte är ledig så kan de lagras i köutrymmet och få vänta på att bli betjänade. Om köutrymmet är fullt så avvisas de. Mobilsystem En basstation i ett GSM-nät har ett antal frekvenser. När frekvenserna är slut för att många ringer så spärras nya samtal. Man kan använda följande kösystem för att beskriva detta: Här är varje radiokanal en betjänare så det finns många betjänare. Kunderna är abonnenter som vill ringa ett telefonsamtal. Det finns inget köutrymme, så när man avvisas så får man inte vänta.
3 Charkuteridisk En charkuteridisk med två biträden kan man modellera på följande sätt: Kunderna avvisas inte utan alla som vill får vänta. En stor serverpark för molntjänster Modeller där flera köer är sammankopplade är viktiga för att undersöka kapaciteten hos molntjänster. Man kan även optimera tjänsterna med hjälp av kömodeller. Andra tillämpningar Kösystem används inte bara inom tele- och datakommunikation. Också när man studerar lagerproblem, tillverkningsprocesser, bagagesystem och vägtrafik används kömodeller. Kömodeller i denna kurs Vi ska studera enskilda kösystem som består av ett köutrymme och ett antal betjänare. Köutrymmet kan vara oändligt (charkuteridisken), ändligt (webbservern) eller inte finnas alls (GSM-nätet). Det kan finnas en eller fler betjänare. Vi ska också studera könät som är system av flera ihopkopplade köer (routern). Eftersom både ankomster och betjäningstider i allmänhet är slummässiga så behöver vi använda sannolikhetsteori. I kursen kommer vi att studera köteori som är teorin för enskilda köer. Vi kommer också att studera könätsteori som behandlar ihopkopplade köer. Dock måste man göra en hel del antaganden om de statistiska fördelningarna för ankomster och betjäningstider i köteori och könätsteori som ibland kan vara orealistiska. Därför ska vi också studera simulering, som är en teknik som är mycket allmängiltig, men som också har sina begränsningar. Vilka statistiska egenskaper som ankomster och betjäningstider har måste man i allmänhet mäta. Vi behandlar dock inte mätningar i denna kurs. Repetition av sannolikhetslära Här följer en repetition av de viktigaste begreppen i sannolikhetsläran. Vi övar på dessa begrepp på de första övningarna. Om du vill ha en mer fyllig version så kolla i läroböckerna i matematisk statistik och i läroboken där ett kapitel ger en snabböversikt. Diskreta stokastiska variabler En stokastisk variabel är ett slumpmässigt talvärde som man får genom att göra ett försök (t ex kasta tärning) eller en observation (t ex iaktta hur många kunder som det finns i ett kösystem). Utfallsrummet är alla värden som en stokastisk variabel kan anta. En diskret stokastisk variabel antar heltalsvärden. Exempel på diskreta stokastiska variabler i denna kurs är antalet kunder i ett kösystem. Det betyder att värdena som de antar för det mesta kommer att tillhöra mängden {0,1,2 }. Låt N vara en diskret stokastisk variabel. Vi kommer att kalla P(N = k) = sannolikheten att har värdet k för variabelns frekvensfunktion. Ett trivialt exempel är att om N är antalet ögon vid kast med en tärning, då är
4 P(N = k) = { 1 6, k {1,2,,6} 0 för övrigt Medelvärdet för en diskret stokastisk variabel är E(N) = kp(n = k) Summan tas för alla k för vilka P(N = k) 0. Variansen för en diskret stokastisk variabel är V(N) = E((N E(N)) 2 ) Om värdet av den stokastiska variabeln ofta ligger långt från medelvärdet så blir variansen stor, annars blir den liten. Ju större varians desto längre från medelvärdet tenderar N att vara. Man kan enkelt visa följande formler: E(N + M) = E(N) + E(M) E(aN) = ae(n) V(N) = E(N 2 ) E 2 (N) Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler antar reella värden. I denna kurs är de ofta tiden mellan två händelser vilket innebär att den oftast är ett positivt tal. Om X är en kontinuerlig stokastisk variabel så kallar vi F X (t) = P(X t) variabelns fördelningsfunktion. Några enkla egenskaper för fördelningsfunktionen: lim F X(t) = 1 eftersom P(X < ) = 1. t F X (t) är en växande funktion 0 F X (t) 1 eftersom frekvensfunktionen är en sannolikhet. Frekvensfunktionen för en kontinuerlig stokastisk variabel definieras som f X (t) = d dt F X(t) Medelvärdet definieras som E(X) = tf X (t)dt Variansen är precis som för diskreta stokastiska variabler V(X) = E((X E(X)) 2 )
5 Man kan också visa att b P(a X b) = f X (t)dt a Oberoende stokastiska variabler Intuitivt så förstår vi vad som menas med att två stokastiska variabler är oberoende av varandra. Om den ena har ett visst värde så påverkar det inte värdet på den andra variabeln. Vi uttrycker det matematiskt på följande sätt: P(N = i, M = j) = P(N = i) P(M = j) för diskreta stokastiska variabler P(X t, Y u) = P(X t) P(y u) för kontinuerliga stokastiska variabler Ju fler variabler i en modell som är oberoende av varandra, desto lättare blir det i allmänhet att göra beräkningar. Längre fram kommer vi att se några trevliga konsekvenser av oberoende. Transformer Transformer är ett hjälpmedel som ibland underlättar beräkningar och härledningar. För diskreta stokastiska variabler använder man z-transformen som definieras som P N (z) = z k P(N = k) k Denna trasform har egenskaperna P N (z) 1 då z 1 d dz P N(z) E(N)då z 1 d 2 dz 2 P N(z) E(N 2 ) E(N) då z 1 Man kan också visa att om M och N är oberoende diskreta stokastiska variabler och A = M + N så gäller P A (z) = P M (z) P N (z) För kontinuerliga stokastiska variabler använder man i stället Laplacetransformen som definieras på följande sätt: F X (s) = e st 0 f X (t)dt Man kan visa följande samband F X (s) 1 då s 0 d ds F X (s) E(X) då s 0 d 2 ds 2 F X (s) E(X 2 ) då s 0 Om X och Y är oberoende och U = X + Y så gäller
6 F U (s) = F X (s) F Y (s) Betingade stokastiska variabler Antag att A och B är två händelser. Då inför vi beteckningen P(A B) = sannolikheten att A har inträffat om vi vet att B inträffat Man kallar detta en betingad sannolikhet. Några exempel med tärningskast visar hur det fungerar. Låt N vara antalet ögon som man får när man kastar. Då gäller: P(N = 1 N 3) = 1 3 P(N = 1 N > 3) = 0 P(N < 3 N = 2) = 1 P(N 3 N 2) = 2 5 Man kan visa att P(A B) = P(A, B) P(B) Där P(A, B) är sannolikheten att både A och B inträffar. Antag att vi delar in allt som kan hända (utfallsrummet) i ett antal händelser B 1, B 2, som är ömsesidigt uteslutande (det vill säga bara en av dem kan inträffa) och att de fyller ut hela utfallsrummet. Om då A är en annan händelse så gäller satsen om total sannolikhet: P(A) = P(A B k )P(B k ) k Om N är en diskret stokastisk variabel och X en kontinuerlig så kan man visa följande: P(N = k) = P(N = k X = t)f X (t)dt Integralen tas oftast bara från 0 till i denna kurs eftersom vi nästan alltid har positiva stokastiska variabler. f X (t) = f X (t N = k)p(n = k) k Man kan visa att dessa två formler följer från satsen om total sannolikhet.
7
Fö relä sning 1, Kö system 2015
Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha
Performance QoS Köteori. Jens A Andersson (Maria Kihl)
Performance QoS Köteori Jens A Andersson (Maria Kihl) Internet Består av ett antal sammankopplade nät som utbyter data enligt egna trafikavtal. Alla delnät som utgör Internet har en gemensam nämnare: Alla
Kunna använda Littles sats för enkla räkningar på kösystem.
Övning 3 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid
Performance QoS Köteori SNMP. Felsökning. Jens A Andersson (Maria Kihl) GET request GET response SET request TRAP MIB. Att mäta är att veta ping
Performance QoS Köteori Jens A Andersson (Maria Kihl) SNMP GET request GET response SET request TRAP MIB Management Information Base 2 Felsökning Att mäta är att veta ping icmp echo traceroute avlyssning
Fö relä sning 2, Kö system 2015
Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är
Kunna använda Littles sats för enkla räkningar på kösystem.
Övning 2 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid
Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna
Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A
Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.
Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.
Övning 7 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.
Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,
Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.
Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret
Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar.
Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.
Tiden i ett tillstånd
Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram.
Övning 4 Vad du ska kunna efter denna övning Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet
Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare.
Övning 5 Vad du ska kunna efter denna övning Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna λ eff. Kunna beräkna medelantal upptagna betjänare. Problem. Antag
Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den.
Övning 4 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den medelantal upptagna betjänare i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Kunna beräkna spärren i ett M/M/m*upptagetsystem.
Övning 5 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den avverkade och erbjudna trafiken i ett M/M/m*upptagetsystem. Känna till enheten Erlang för
Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade
HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
2 Laborationsuppgifter, upptagetsystem
Laboration 2 i Kösystem Denna laboration behandlar upptagetsystem och könät. När man kommer till en uppgift som är markerad med en stjärna (*) är det tänkt att man ska visa sina resultat för handledaren
FÖRELÄSNING 3:
FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data
Matematisk statistik 9 hp Föreläsning 4: Flerdim
Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Network Management Säkerhet Performance QoS Köteori. Jens A Andersson
Network Management Säkerhet Performance QoS Köteori Jens A Andersson Publika telenätet Digitalt lokalstation Trunknät Accessnät Analogt Analogt 2 Trunknätet Internationell station Gateway till mobila nät
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Ur en kortlek på 52 kort väljer man ( utan återläggning och utan hänsyn till ordning) slumpvis 5 kort. Vad är sannolikheten för att få
Tentamen TEN, HF, aug 9 Matematisk statistik Kurskod HF Skrivtid: 8:-: Lärare och examinator : Armin Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken
Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram.
Övning 3 Vad du ska kunna efter denna övning Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet när
M/M/m/K kösystem. M/M/m/K kösystem
Allmänt om KÖSYSTEM (=betjäningssystem). För att definiera ett kösystem måste vi ange ankomstrocessen ( dvs hur kunder ankommer till systemet) och betjäningsrocess (dvs hur lång tid det tar att betjäna
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013
Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process
Matematisk statistik for B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Beskriva Data Florence Nightingale. Forel.
Matematisk statistik for B, K, N, BME och Kemister asning Forel 1 Johan Lindstrom 29 augusti 2016 Johan Lindstr om - johanl@maths.lth.se FMS086/MASB02 F1 2/21 Till ampningar Matematisk statistik slumpens
TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010
TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010 1 1 Stokastiska processer Definition 1.1 En stokastisk process är en familj {X(t);t T } (kan även skrivas {X
Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
a) Använd samtal.mat för att beräkna antalet samtal som blir spärrade i de olika cellerna under den givna timmen.
Inlämningsuppgift Svaren lämnas in i kursfacket märkt TNK090 på plan 5 i Täppan, senast 2016-10-28. Alla svar ska motiveras, tankegången i lösningen förklaras och notation definieras. Uppgifterna utförs
TILLSTÅNDSGRAFEN. Slutligen erhålls den mycket viktiga så kallade Snittmetoden :
Föreläsning 3. TILLSTÅNDSGRAFEN Slutligen erhålls den mycket viktiga så kallade Snittmetoden :... Snittmetoden kommer vi flitigt att använda för att bestämma tillståndssannolikheterna! Exempel på beräkning
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
TENTAMEN I STATISTIKENS GRUNDER 1
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Satsen om total sannolikhet och Bayes sats
Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
TMS136. Föreläsning 2
TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
aug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13
Tentamen TEN, HF, aug 7 Matematisk statistik Kurskod HF Skrivtid: :-: Lärare och examinator : Armin Halilovic Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken
Monte Carlo-metoder. Bild från Monte Carlo
Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Matematisk statistik - Slumpens matematik
Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Matematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
732G01/732G40 Grundläggande statistik (7.5hp)
732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.
Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga
SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk
1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5
1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri
S0005M, Föreläsning 2
S0005M, Föreläsning 2 Mykola Shykula LTU Mykola Shykula (LTU) S0005M, Föreläsning 2 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Föreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
Matematisk statistik fo r B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Beskriva Data Florence Nightingale.
Matematisk statistik fo r B, K, N, BME och Kemister Fo rela sning 1 Johan Lindstro m 28 augusti 2017 Johan Lindstro m - johanl@maths.lth.se FMSF70/MASB02 F1 2/18 Tilla mpningar Matematisk statistik slumpens
Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Kurs: HF Matematisk statistik Lärare: Armin Halilovic Datum: 8 maj 9 Skrivtid: 8:-: Tillåtna hjälmedel: Miniräknare av vilken ty som helst och bifogade formelblad (sida ). Förbjudna hjälmedel:
Slumpvariabler och sannolikhetsfördelningar
och sannolikhetsfördelningar Föreläsning 4 Sannolikhet och Statistik 5 hp Fredrik Jonsson April 2010 Översikt 1. Verklighetsanknutna exempel. Definition relativt utfallsrum. 2. Sannolikhetsfördelningar
Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen
Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen Denna föreläsning kommer mest att vara en repetition av stoff från grundkursen. Längden på detta dokument kan tyckas vara oproportionerligt
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
Introduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad
Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift
Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan
Stokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
KURSPROGRAM HT-10 MATEMATISK STATISTIK AK FÖR CDI, FMS 012
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK KURSPROGRAM HT-10 MATEMATISK STATISTIK AK FÖR CDI, FMS 012 Hemsida Kursens hemsida finns på http://www.maths.lth.se/matstat/kurser/fms012/
TAMS79: Föreläsning 6. Normalfördelning
TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar