Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram.
|
|
- Carina Fransson
- för 7 år sedan
- Visningar:
Transkript
1 Övning 3 Vad du ska kunna efter denna övning Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet när antalet kunder är begränsat och/eller antalet platser i kösystemet är begränsat Problem 1 Antag att vi har ett M/M/1-system med två buffertplatser och fyra kunder Antag vidare att ankomstintensiteten för en ledig kund är β s 1, samt att betjäningsintensiteten är µ s 1 (a) Rita tillståndsdiagram (b) Beräkna medelantal upptagna betjänare (c) Beräkna sannolikheten att en kund spärras (d) Beräkna hur många kunder som i medeltal betjänas per sekund Antag att vi kan modellera ett system som ett M/M/-system med sex kunder och en buffertplats När en kund har fått ett svar från systemet så tänker kunden i medeltal 1 s innan hen skickar ett nytt jobb till systemet Medelbetjäningstiden är 05 s (a) Rita Markovkedjan för detta system (b) Bestäm tillståndsfördelningen (c) Bestäm spärrsannolikheten (d) Bestäm medelantal upptagna betjänare (e) Bestäm hur många kunder som i medeltal spärras per sekund 3 Ankomstintensiteten till ett M/M/1-system är λ Vid varje ankomst kommer två kunder till systemet Betjänaren behandlar kunderna en och en med intensiteten µ (a) Rita tillståndsdiagram och ställ upp ekvationerna för p k med hjälp av snittmetoden (b) Bestäm z-transformen för antalet kunder i systemet utgående från ekvationerna i a) (c) Beräkna medelantal kunder i systemet 4 I denna uppgift skall vi analysera en webbserver Nya jobb, dvs httprequests, kommer enligt en Poissonprocess med λ s 1 Servern modelleras som en betjänare med en begränsad buffert med K platser Jobben behandlas enligt First-Come-First-Served Medelbetjäningstiden är E(X) s I diagrammet nedan visas den uppmätta tiden i systemet, E(T ), (i sekunder) för jobb som inte spärras som en funktion av ankomstintensiteten Bestäm följande från diagrammet: 1
2 (a) Medelbetjäningstiden för ett godtyckligt jobb, dvs E(X) (b) Antalet köplatser, dvs K 5 Betrakta ett M/M/ -system där kunder kommer i grupper om två Det kommer i medeltal λ grupper per sekund Kunderna betjänas en och en och betjäningsintensiteten är µ (a) Rita Markovkedjan för systemet och ställ upp tillståndsekvationerna (b) Bestäm den differentialekvation som måste lösas för att få fram z- transformen för antalet kunder i systemet genom att först multiplicera tillståndsekvationerna med z k och sedan addera dem (c) Visa att P (z) = Ce λ(z+z /)/µ är en lösning till differentialekvationen (d) Bestäm C (e) Bestäm medelantal kunder i systemet (f) Vilken relation måste råda mellan λ och µ för att systemet ska vara stabilt? 6 Kunderna som befinner sig i kön i ett M/M/1-system med K buffertplatser blir otåliga Så länge en kund befinner sig i kön lämnar den kön utan att få betjäning med intensiteten µ/ Ankomstintensiteten är λ och betjäningsintensiteten är µ (a) Bestäm tillståndssannolikheterna (b) Beräkna medelantalet spärrade ankomster per tidsenhet (c) Beräkna medelantalet avgångar utan betjäning från systemet per tidsenhet Lösningar till övning 3 1 (a) Markovkedjan blir
3 (b) Vi använder snittmetoden och inför α = β/µ Det ger 4βp 0 = µp 1 p 1 = 4αp 0 3βp 1 = µp p = 1α p 0 βp = µp 3 p 3 = 4α 3 p 0 Sedan utnyttjar vi att summan av alla sannolikheter ska vara = 1 för att bestämma p 0 1 p 0 = 1 + 4α + 1α + 4α 3 Nu får vi medelantal upptagna betjänare som E(N s ) = 0 p (p 1 + p + p 3 ) = 4α + 1α + 4α α + 1α + 4α 3 (c) Sannolikheten att en kund spärras blir λ 3 p 3 3 λ kp k = = β4α 3 p 0 4β p 0 + 3β 4αp 0 + β 1α p 0 + β 4α 3 p 0 4α α + 4α + 4α 3 (d) Antal kunder som betjänas per sekund är (a) Markovkedjan ser ut så här: λ eff = 4βp 0 + 3βp 1 + βp (b) Vi ställer upp tillståndsekvationerna med hjälp av snittmetoden 6p 0 = p 1 5p 1 = 4p 4p = 4p 3 Löser vi dessa ekvationer (med hjälp av att p 0 + p 1 + p + p 3 = 1) så får vi p 0 = 4/46 p 1 = 1/46 p = 15/46 p 3 = 15/46 3
4 (c) Sannolikheten för spärr blir λ 3 p 3 3 λ = 45 kp k (d) Medelantal upptagna betjänare kan vi beräkna med hjälp av definitionen av medelvärde, så här: E(N s ) = 0 P (0 upptagna betjänare) + +1 P (1 upptagen betjänare) + + P ( upptagna betjänare) = = p 1 + (p + p 3 ) = = (e) Medelvärdet av antalet kunder som spärras per sekund blir 3 (a) Markovkedjan blir λ 3 p 3 = = 098 Vi använder snittmetoden Observera att alla snitt utom det första skär av tre bågar i Markovkedjan Därför är det två termer i högerledet utom i första ekvationen Vi får µp 1 = λp 0 µp = λ(p 0 + p 1 ) µp 3 = λ(p 1 + p ) (b) Multiplicera ekvation k ovan med z k Det ger µp 1 z = λp 0 z µp z = λ(p 0 + p 1 )z µp 3 z 3 = λ(p 1 + p )z 3 Om vi adderar alla ekvationer får vi ( ) µ z k p k = λ p 0 z + z k+ p k + z k+1 p k 4
5 Definitionen av z-transform är P (z) = vilket insatt i ekvationen ovan ger z k p k µ(p (z) p 0 ) = λ(p 0 z + z P (z) + z(p (z) p 0 )) Löser man ut P (z) så får man P (z) = µp 0 µ λz λz För att bestämma p 0 så observerar vi att för z-transformen måste gälla P (1) = 1 k p k = p k = 1 I vårt fall måste då gälla att Slutligen får vi P (1) = µp 0 µ λ = 1 p 0 = µ λ = 1 λ µ µ P (z) = ( µ µ λz λz 1 λ ) µ (c) För att bestämma medelvärdet deriverar vi först P (z) P (z) = µp 0(λ + λz) (µ λz λz ) Därefter får vi medelvärdet genom att låta z 1 E(N) = lim P (z) = µp 0(λ + λ) z 1 (µ λ) = 3λ µ λ 4 (a) När ankomstintensiteten är mycket låg så kommer tiden i systemet för en kund nästan alltid att vara = betjäningstiden Därför kan vi lösa av medelbetjäningstiden genom att se vad medeltiden i systemet är när ankomstintensiteten är mycket liten Ur diagrammet (vid λ = 0) ser vi att medelbetjäningstiden = E(X) är 1 sekund (b) När ankomstintensiteten är mycket hög så kommer systemet nästan alltid att vara fullt En kund som kommer in i systemet hamnar nästan alltid på den sista köplatsen Kunden måste alltså först vänta på att de L kunderna före honom ska bli färdiga innan han börjar betjänas Därefter ska kunden själv betjänas innan han lämnar systemet Det betyder att kunden i medeltal tillbringar tiden (L + 1)E(X) i systmet Om vi tittar i diagrammet ser vi att för mycket stora värden på ankomstintensiteten så är medeltiden i systemet 4 sekunder Det betyder att (L + 1)E(X) = 4 L = 3 5
6 5 (a) Markovkedjan blir Snittmetoden ger tillståndsekvationerna µp 1 = λp 0 µp = λ(p 0 + p 1 ) 3µp 3 = λ(p 1 + p ) 4µp 4 = λ(p + p 3 ) kµp k = λ(p k + p k 1 ) (b) Vi multiplicerar ekvation k med z k vilket ger µp 1 z = λp 0 z µp z = λ(p 0 + p 1 )z 3µp 3 z 3 = λ(p 1 + p )z 3 4µp 4 z 4 = λ(p + p 3 )z 4 kµp k z k = λ(p k + p k 1 )z k Därefter summerar vi alla ekvationerna Resultatet är [ ] µz kp k z k 1 = λ p 0 z + z p k z k + z p k z k Vi observerar att Insatt ovan ger det P (z) = kp k z k 1 µzp (z) = λz [p 0 + zp (z) + P (z) p 0 ] = λz(1 + z)p (z) Differentialekvationen är således efter hyfsning µp (z) = λ(1 + z)p (z) (c) Deriverar man P (z) = Ce λ(z+z /)/µ så blir resultatet P (z) = Cλ(1 + z)eλ(z+z /)/µ µ Insättning visar att differentialekvationen satisfieras 6
7 (d) För att bestämma värdet på C använder vi att P (z) 1 då z 1 Det ger Ce λ(1+1/)/µ = 1 C = e 15λ/µ (e) Vi deriverar P (z) och låter sedan z 1 för att bestämma medelantal kunder: lim P (z) = C λ z 1 µ e15λ/µ = λ µ (f) Eftersom det finns oändligt många betjänare så är systemet stabilt Det finns inget värde på λ för vilket medelantal kunder 6 (a) Markovkedjan blir Om vi sätter ρ = λ/µ så ger snittmetoden för k 0 λp k 1 = (k + 1)µ p k p k = ρp k 1 k + 1 = (ρ) p k (k + 1)k = = (ρ)k (k + 1)! p 0 Sedan bestämmer vi p 0 K+1 ( (ρ) k K+1 (k + 1)! p 0 = 1 p 0 = ) 1 (ρ) k (k + 1)! Denna summa kan inte förenklas Svaret blir således ( K+1 ) 1 p k = (ρ)k (ρ) k (k + 1)! (k + 1)! (b) Medelantalet spärrade ankomster per tidsenhet blir λp K+1 (c) Om det befinner sig k (k 1) kunder i systemet så finns det k 1 kunder i kön Var och en av dessa kunder lämnar kön med intensiteten µ/, så den sammanlagda intensiteten med vilken kunder lämnar systemet innan de har kommit fram till betjänaren är då (k 1)µ Det innebär att medelvärdet av antal kunder som per tidsenhet lämnar systemet för att de blir otåliga blir K+1 (k 1)µ p k 7
Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram.
Övning 4 Vad du ska kunna efter denna övning Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet
Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare.
Övning 5 Vad du ska kunna efter denna övning Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna λ eff. Kunna beräkna medelantal upptagna betjänare. Problem. Antag
Kunna använda Littles sats för enkla räkningar på kösystem.
Övning 2 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid
Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den.
Övning 4 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den medelantal upptagna betjänare i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning
Kunna använda Littles sats för enkla räkningar på kösystem.
Övning 3 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid
Fö relä sning 2, Kö system 2015
Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är
Kunna beräkna spärren i ett M/M/m*upptagetsystem.
Övning 5 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den avverkade och erbjudna trafiken i ett M/M/m*upptagetsystem. Känna till enheten Erlang för
Tiden i ett tillstånd
Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat
Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.
Övning 7 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.
Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar.
Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.
TILLSTÅNDSGRAFEN. Slutligen erhålls den mycket viktiga så kallade Snittmetoden :
Föreläsning 3. TILLSTÅNDSGRAFEN Slutligen erhålls den mycket viktiga så kallade Snittmetoden :... Snittmetoden kommer vi flitigt att använda för att bestämma tillståndssannolikheterna! Exempel på beräkning
Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.
Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.
2 Laborationsuppgifter, upptagetsystem
Laboration 2 i Kösystem Denna laboration behandlar upptagetsystem och könät. När man kommer till en uppgift som är markerad med en stjärna (*) är det tänkt att man ska visa sina resultat för handledaren
M/M/m/K kösystem. M/M/m/K kösystem
Allmänt om KÖSYSTEM (=betjäningssystem). För att definiera ett kösystem måste vi ange ankomstrocessen ( dvs hur kunder ankommer till systemet) och betjäningsrocess (dvs hur lång tid det tar att betjäna
Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.
Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna
TENTAMEN I KOTEORI 20 dec 07 Ten2 i kursen HF1001 ( Tidigare kn 6H3012), KÖTEORI OCH MATEMATISK STATISTIK,
TENTAMEN I KOTEORI dec 7 Ten i ursen HF Tidigare n 6H), KÖTEORI OH MATEMATISK STATISTIK, och TEN i 6H7, Dataommuniation och nätver, ) Srivtid: :-7: Lärare: Armin Halilovic Kursod HF Hjälmedel: Miniränare
a) Använd samtal.mat för att beräkna antalet samtal som blir spärrade i de olika cellerna under den givna timmen.
Inlämningsuppgift Svaren lämnas in i kursfacket märkt TNK090 på plan 5 i Täppan, senast 2016-10-28. Alla svar ska motiveras, tankegången i lösningen förklaras och notation definieras. Uppgifterna utförs
Stokastiska processer och simulering I 24 maj
STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj 2016 9 14
Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Kurs: HF Matematisk statistik Lärare: Armin Halilovic Datum: 8 maj 9 Skrivtid: 8:-: Tillåtna hjälmedel: Miniräknare av vilken ty som helst och bifogade formelblad (sida ). Förbjudna hjälmedel:
Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ
M/M/ ösystem M/M/ ösystem Ett M/M/ betjäningssystem har följande egensaper:. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde x =.. Kunder anommer enligt Poissonprocess
Fö relä sning 1, Kö system vä ren 2014
Fö relä sning 1, Kö system vä ren 2014 Här följer en mycket kort sammanfattning av det viktigaste i Föreläsning 1. Observera att dessa anteckningar inte kan ersätta läroboken, de är alltför kortfattade
Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.
Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret
TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
Fö relä sning 1, Kö system 2015
Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha
Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Tentamen i Sannolikhetslära och statistik, TNK69, 26--7, kl 8 3. Hjälpmedel är räknare med tömda minnen samt formelsamling utgiven
b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p)
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 9 JUNI 05 KL 4.00 9.00. Examinator: Boualem Djehiche tel. 790 78 75. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Ur en kortlek på 52 kort väljer man ( utan återläggning och utan hänsyn till ordning) slumpvis 5 kort. Vad är sannolikheten för att få
Tentamen TEN, HF, aug 9 Matematisk statistik Kurskod HF Skrivtid: 8:-: Lärare och examinator : Armin Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken
Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 6 Markovprocesser 9 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 6 Föreläsningsplan 1 Förra Föreläsningen 2 Johan Westerborn
Stokastiska processer och simulering I 24 augusti
STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016
Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic
Tentamen TEN, HF, 9 maj 9 Matematisk statistik Kurskod HF Skrivtid: 4:-8: Lärare och examinator : Armin Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av
TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna
Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A
Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Lösningar till tentamen i Transformmetoder okt 2007
Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y
TAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
Performance QoS Köteori SNMP. Felsökning. Jens A Andersson (Maria Kihl) GET request GET response SET request TRAP MIB. Att mäta är att veta ping
Performance QoS Köteori Jens A Andersson (Maria Kihl) SNMP GET request GET response SET request TRAP MIB Management Information Base 2 Felsökning Att mäta är att veta ping icmp echo traceroute avlyssning
aug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13
Tentamen TEN, HF, aug 7 Matematisk statistik Kurskod HF Skrivtid: :-: Lärare och examinator : Armin Halilovic Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken
Performance QoS Köteori. Jens A Andersson (Maria Kihl)
Performance QoS Köteori Jens A Andersson (Maria Kihl) Internet Består av ett antal sammankopplade nät som utbyter data enligt egna trafikavtal. Alla delnät som utgör Internet har en gemensam nämnare: Alla
TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
Utdrag ur TAMS15: Matematisk statistik I, grundkurs Extra kursmaterial för TAMS79
Utdrag ur TAMS5: Matematisk statistik I, grundkurs Extra kursmaterial för TAMS79 John M. Noble, Institute of Applied Mathematics, University of Warsaw, ul. Banacha, -97 Warszawa Revised: J. Thim ii Innehåll
Föreläsningsanteckningar köteori
Föreläsningsanteckningar köteori Fredrik Olsson, fredrik.olsson@iml.lth.se Produktionsekonomi, Lunds universitet 3 augusti 206 Dessa föreläsningsanteckningar utgör en delmängd av vad som tagits upp på
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 4 Markovprocesser 20 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 4 Föreläsningsplan 1 Förra Föreläsningen 2 Innbäddade
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Teori för linjära ordinära differentialkvationer med konstanta koefficienter
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016/2017 Teori för linjära ordinära differentialkvationer med konstanta koefficienter 1. FÖRSTA ORDNINGEN Homogena fallet. En homogen linjär
Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer
Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,
1. Lös ut p som funktion av de andra variablerna ur sambandet
Matematiska institutionen Stockholms universitet Avd matematik Eaminator: Torbjörn Tambour Tentamensskrivning i Matematik för kemister K den 0 december 2003 kl 9.00-4.00 LÖSNINGAR. Lös ut p som funktion
Tentamen i FMS180/MASC03 Markovprocesser
Matematisk statistik Matematikcentrum Lunds Universitet Tentamen i FMS80/MASC03 Markovprocesser 009-05-5 Lösningsförslag. Följande är en möjlighet. 6 5 3 4 Här är tillstånden, och 3 transienta, tillstånd
TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010
TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010 1 1 Stokastiska processer Definition 1.1 En stokastisk process är en familj {X(t);t T } (kan även skrivas {X
6-2 Medelvärde och median. Namn:
6-2 Medelvärde och median. Namn: Inledning Du har nu lärt dig en hel del om datainsamling och presentation av data i olika sorters diagram. I det här kapitlet skall du studera hur man kan karaktärisera
P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1
Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen
LAPLACES OCH POISSONS EKVATIONER
TH Matematik Olle tormark LAPLACE OCH POION EVATIONE Poissons ekvation φ(x) = (där ρ är en given funktion och φ söks) satisfieras till exempel av den elektrostatiska potentialen i ett område som innehåller
Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.
Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
ANDREAS REJBRAND NV1A Matematik Linjära ekvationssystem
ANDREAS REJBRAND NVA 004-04-05 Matematik http://www.rejbrand.se Linjära ekvationssystem Innehållsförteckning LINJÄRA EKVATIONSSYSTEM... INNEHÅLLSFÖRTECKNING... DEFINITION OCH LÖSNINGSMETODER... 3 Algebraiska
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl
Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden
Lösningar till utvalda uppgifter i kapitel 8
Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet
x 1(t) = x 2 (t) x 2(t) = x 1 (t)
Differentialekvationer II Modellsvar till räkneövning 4 16.4. 218 (kl 12-14 B222) 1. Lös det linjära homogena DE-systemet x 1(t) = x 2 (t) x 2(t) = x 1 (t) med matrismetoden. Påminnelse: egenvärden och
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Statistiska metoder för säkerhetsanalys
1 / 14 Statistiska metoder för säkerhetsanalys F2: Händelseströmmar och Poissonprocesser Definition Intensitet Exempel 2 / 14 Händelseström Händelsen A inträffar vid de okända tidpunkterna S 1, S 2,...
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2
Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett
Kap Inversfunktion, arcusfunktioner.
Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.
kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.
Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra II LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING Lös ekvationssystemet x + y + z 9 x + 4y 3z 3x + 6z 5z med hjälp av Gausselimination Lösning:
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH
Läs detta först: INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Det här kompendiet är avsett som en introduktion till kompendiet av Enger och Grandell. Det är absolut inget fel på det officiella
Lösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ
Svar till vissa uppgifter från första veckan.
Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!
där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r.
Lektion 4, Envariabelanals den 30 september 1999 där 0 < ξ 0 är högerledet alltid större än 2.6.2 Åskådliggör medelvärdessatsen genom att finna en punkt i det öppna intervallet (1, 2) där
6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
DEL I 15 poäng totalt inklusive bonus poäng.
Matematiska Institutionen KTH TENTAMEN i Linjär algebra, SF604, den 5 december, 2009. Kursexaminator: Sandra Di Rocco Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel
1 Dimensionsanalys och π-satsen.
Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
7 Extremvärden med bivillkor, obegränsade områden
Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II
Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs
Exempel på tentamensuppgifter
STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)
Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen
Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Experimentella metoder 2014, Räkneövning 1
Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att