Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
|
|
- Kurt Larsson
- för 8 år sedan
- Visningar:
Transkript
1 Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna medelvärde, andramoment och varians för stokastiska variabler med hjälp av transformerna. Kunna beräkna laplace- och z-transformen för summor av oberoende stokastiska variabler. En fråga som vi ofta får är hur man ska tolka transformerna. I signalbehandling kan man ju ibland ge en fysisk motsvarighet till en transform, t ex så ger ju fouriertransformen en signals spektrum. Någon sådan enkel tolkning finns inte för våra transformer. Se dem bara som matematiska hjälpmedel som gör det lättare att lösa problem! Problem, nivå A 1. Låt N vara en diskret stokastisk variabel för vilken P (N k) p k (1 p),k (a) Beräkna z-transformen för N. (b) Beräkna medelvärdet för N med hjälp av z-transformen. (c) Beräkna variansen för N med hjälp av z-transformen. 2. Låt X och Y vara två oberoende positiva och kontinuerliga stokastiska variabler med frekvensfunktionerna f X (t) e t,t f Y (t) δ(t 1/) (a) Beräkna medelvärdet för X med laplacetransformen. (b) Beräkna variansen för X med laplacetransformen. (c) Bestäm frekvensfunktionen för Z X + Y med laplacetransformer. 3. För en födelse-dödsprocess i kontinuerlig tid med tre tillstånd gäller att q 21 och q 23. Visa att tiden i tillstånd 2 är exponentialfördelad med medelvärdet 1 + 1
2 Problem, nivå B 4. Låt X vara en likformigt fördelad stokastisk variabel som kan anta värden mellan och 1. (a) Beräkna X:s laplacetransform. (b) Använd laplacetransformen för att beräkna medelvärdet för X. (c) Beräkna medelvärdet utan att använda laplacetransformen. 5. Vi singlar slant n gånger. Varje gång vi får klave drar vi ett exponentialfördelat tal med medelvärdet 1/. Efter de n slantsinglingarna summerar vi alla de dragna talen. Låt oss kalla summan X. (a) Beräkna laplacetransformen för X. (b) Beräkna medelvärdet för X. Problem, nivå C 6. Antag att intensiteterna som står på utpilarna från ett tillstånd i en markovkedja är numrerade 1...n och att intensiteten på utpil nummer i är i. Visa att sannolikheten att man lämnar tillståndet via pil i är i j j 7. Z-transformen för antalet kunder som kommer till ett kösystem under en dag är 1 p 1 pz Varje kund medför ett arbete som varar en exponentialfördelad tid med medelvärde 1/. (a) Hur mycket arbete kommer det i medeltal på en dag? (b) Vad är laplacetransformen för allt arbete som kommer under en dag? Lösningar till övning 2 1. Detta är nästan samma problem som i tal 1 i Övning 1. Som ni kommer att se så blir det mycket lättare att lösa när man använder z-transformen i stället för att använda definitionerna. (a) Vi beräknar N:s z-transform: P (z) z k P (N k) z k (1 p)p k k k (1 p) (pz) k 1 p k 1 pz 2
3 (b) Vi deriverar en gång: d 1 p ( p)(1 p) dz 1 pz p(1 p) (1 pz) 2 (1 pz) 2 p(1 p) (1 p) p 2 1 p då z 1 Således är medelvärdet p 1 p (c) Ytterligare en derivering ger d 2 1 p dz 2 1 pz 2p2 (1 p) (1 pz) 2p2 3 (1 p) då z 1 2 Detta innebär att E(N 2 ) E(N) E(N 2 ) Slutligen får vi 2p2 (1 p) 2 2p2 (1 p) + p 2 1 p p + p2 (1 p) 2 V (N) E(N 2 ) E 2 (N) p + p2 (1 p) 2 p 2 (1 p) 2 p (1 p) 2 2. Vi börjar med att beräkna laplacetransformerna för X och Y. Definitionen ger FX (s) e st f X (t)dt F Y (s) e st f Y (t)dt e st e t dt + s e st δ(t 1/)dt e s/ I formelsamlingen finns en tabell över de viktigaste laplacetransformerna. Använd gärna den när du löser problem. (a) En derivering ger d ds F X(s) ( + s) 1 2 då s Således blir E(X) 1 (b) Vi deriverar ytterligare en gång d 2 ds 2 F X (s) Det innebär att 2 ( + s) då s E(X 2 ) 2 2 V (X) E(X2 ) E 2 (X)
4 (c) Eftersom X och Y är oberoende så får vi Z:s laplacetransform som produkten av X:s och Y :s laplacetransformer. Det ger FZ(s) e s/ + s En titt i formelsamlingen visar att f(t a) L e as F (s) Detta ger att f Z (t) e (t 1/) 3. Tiden i ett tillstånd kan inte bero på vad som händer när man väl har lämnat tillståndet. Låt oss därför antaga att utintensiteterna från tillstånd 1 och 3 är det vill säga de är absorberande tillstånd. Om vi startar denna process i tillstånd 2, så måste fördelningen för tiden i tillstånd 2 vara samma som i den ursprungliga födelse-dödsprocessen. Den nya processen har följande Q-matris Q vilket ger p (t) p(t) Q p 2 (t) ( + )p 2(t) p 2 (t) Ce (+)t Eftersom processen startar i tillstånd 2 så måste det gälla att p 2 () 1 C 1 Om X är tiden i tillstånd 2 så gäller alltså F X (t) P (X t) 1 P (X >t)1 p 2 (t) 1 e (+)t Detta innebär att X är exponentialfördelad med medelvärde 1/( + ). 4. (a) Frekvensfunktionen för en likformigt fördelad variabel som kan anta värden mellan och 1 är { 1 om t 1 f X (t) annars Om vi definierar { 1 om t Θ(t) annars så kan vi skriva f X (t) Θ(t) Θ(t 1) 4
5 En titt i tabellen över laplacetransformer avslöjar att Ae at Θ(t) L A a + s Sätter vi a och A 1så ger det att Θ(t) L 1 s Dessutom gäller att f(t a) L e as F (s) vilket slutligen ger f X (t) L F X(s) 1 s (1 e s ) (b) Vi deriverar Laplacetransformen en gång för att beräkna medelvärdet d ds F X (s) 1 s e s 1 s (1 2 e s ) se s 1+e s s 2 s2 s(1 s O(s3 )) 1+1 s + s2 + 2 O(s3 ) s 2 Således är s2 2 + O(s3 ) s O(s) 1 2 då s E(X) 1 2 (c) Vi använder definitionen av medelvärde 1 E(X) tf X (t)dt tdt 1 2 Här är det faktiskt mycket enklare att inte använda laplacetransformen. 5. (a) Antag att A antalet gånger vi får klave när vi singlar slant. A kommer då att vara binomialfördelad med frekvensfunktionen ( ) n P (A i) p i (1 p) n i, i n i Antag nu att det blir i klavar när vi singlar slant. Då kommer X att vara summan av i oberoende stokastiska variabler var och en med laplacetransformen + s Det innebär att ( ) i FX(s A i) + s 5
6 Vi tar bort betinget n FX (s) FX (s A i)p (A i) (1) i ( n ) i ( ) n p i (1 p) n i (2) i + s i ( ) n p + s +1 p (3) (b) Vi beräknar medelvärdet genom att derivera och låta s d ds F X(s) p ( ) n 1 p ( + s) n 2 + s +1 p np då s Således blir E(X) np 6. Låt oss för enkelhetens skull titta på ett tillstånd som har två utpilar och härleda resultatet för detta specialfall. Vi plockar ut tillståndet ur den ursprungliga markovkedjan och gör en ny markovkedja som består av tre tillstånd: tillstånd (som är det ursprungliga), tillstånd 1 och tillstånd 2. Det går en pil från tillstånd till tillstånd 1 på vilken det står 1 och en från tillstånd till tillstånd 2 på vilken det står 2. Antag vidare att tillstånd 1 och 2 är absorberande, dvs man lämnar aldrig tillståndet när man har hamnat i det och att markovkedjan startar i tillstånd. Sannolikheten att man absorberas i tillstånd i i denna nya markovkedja är detsamma som sannolikheten att man lämnar tillstånd via pil i. Dessutom inser man att sannolikheten att man lämnar tillstånd via pil i i den nya markovkedjan är lika med sannolikheten att man lämnar tillstånd via pil i i den ursprungliga markovkedjan. Q-matrisen för den nya markovkedjan är Q vilket leder till ekvationssystemet p (t) ( )p (t) p (t) p(t)q p 1 (t) 1p (t) p 2 (t) 2p (t) med begynnelsevillkor p () 1, p 1 () och p 2 eftersom den nya kedjan börjar i tillstånd. Först löser vi ekvationen för p (t) p (t) ( )p (t) p (t) Ce ( 1+ 2 )t Begynnelsevillkoret p () 1 ger sedan C 1. Insättning av p (t) i ekvationen p 1(t) 1 p (t) ger nu p 1 (t) 1e ( 1+ 2 )t p 1 (t) e ( 1+ 2 )t + A 6
7 Begynnelsevillkoret p 1 () ger A Man kan beräkna p 2 (t) på samma sätt som p 1 (t). Detta ger p (t) e ( 1+ 2 )t då t p 1 (t) p 2 (t) 1 ( ) 1 e ( )t 1 då t ( ) 2 1 e ( )t 2 då t Detta måste innebära att man hoppar till tillstånd i, i 1, 2 med just sannolikheten i Man kan generalisera detta till godtyckligt antal utpilar från ett tillstånd. 7. Låt oss införa beteckningarna X totala mängden arbete som kommer under en dag N antalet ankomster under en dag (a) Om det kommer k kunder under en dag så är medelvärdet av den ankommande arbetsmängden k/. Det innebär att E(X N k) k Vi tar bort betinget E(X) E(X N k)p (N k) 1 kp(n k) E(N) k P (N k) Nu återstår att beräkna E(N). Vi gör detta genom att derivera z-transformen och låta z 1. d 1 p dz 1 pz Svaret blir således p E(X) (1 p) p(1 p) (1 pz) 2 p 1 p då z 1 7
8 (b) Laplacetransformen för en stokastisk variabel med medelvärde 1/ är + s Laplacetransformen för summan av k sådana stokastiska variabler får man genom att multiplicera k sådana laplacetransformer vilket ger ( ) k FX (s N k) + s Nu tar vi bort betinget FX (s) FX (s N k)p (N k) p)( + s) P N ( )(1 + s + s p ( ) k P (N k) + s 8
Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.
Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.
Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret
Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A
Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Fö relä sning 2, Kö system 2015
Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är
Tiden i ett tillstånd
Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat
Fö relä sning 1, Kö system vä ren 2014
Fö relä sning 1, Kö system vä ren 2014 Här följer en mycket kort sammanfattning av det viktigaste i Föreläsning 1. Observera att dessa anteckningar inte kan ersätta läroboken, de är alltför kortfattade
Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar.
Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.
Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram.
Övning 4 Vad du ska kunna efter denna övning Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet
Kunna använda Littles sats för enkla räkningar på kösystem.
Övning 3 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid
Fö relä sning 1, Kö system 2015
Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.
Övning 7 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Tentamen i matematisk statistik, TAMS15/TEN (4h)
LINKÖPINGS UNIVERSITET Kurskod: TAMS1 Matematiska institutionen Provkod: TEN1 Johan Thim Datum: 2018-12-42 Institution: MAI Tentamen i matematisk statistik, TAMS1/TEN1 2018-12-42 (4h Hjälpmedel är: miniräknare
Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare.
Övning 5 Vad du ska kunna efter denna övning Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna λ eff. Kunna beräkna medelantal upptagna betjänare. Problem. Antag
Föreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
Kunna använda Littles sats för enkla räkningar på kösystem.
Övning 2 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid
Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram.
Övning 3 Vad du ska kunna efter denna övning Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet när
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 4 Markovprocesser 20 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 4 Föreläsningsplan 1 Förra Föreläsningen 2 Innbäddade
Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den.
Övning 4 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den medelantal upptagna betjänare i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning
P =
Avd. Matematisk statistik TENTAMEN I SF297 (f d 5B157) TILLFÖRLITLIGHETSTEORI LÖRDAGEN DEN 2 OKTOBER 21 KL 1. 18.. Examinator: Gunnar Englund, tel. 79716, e-postadress: gunnare@math.kth.se Tillåtna hjälpmedel:
Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,
Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =
Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna
Kunna beräkna spärren i ett M/M/m*upptagetsystem.
Övning 5 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den avverkade och erbjudna trafiken i ett M/M/m*upptagetsystem. Känna till enheten Erlang för
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.
Stokastiska processer och simulering I 24 maj
STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj 2016 9 14
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3
Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
TAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,
Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Oberoende stokastiska variabler
Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen
Stokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Tentamen i FMS180/MASC03 Markovprocesser
Matematisk statistik Matematikcentrum Lunds Universitet Tentamen i FMS80/MASC03 Markovprocesser 009-05-5 Lösningsförslag. Följande är en möjlighet. 6 5 3 4 Här är tillstånden, och 3 transienta, tillstånd
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk
Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Poisson Drivna Processer, Hagelbrus
Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA Matematisk statistik, Tentamen består av åtta uppgifter motsvarande totalt poäng. Det krävs minst poäng för betyg, minst poäng för 4 och minst 4 poäng för. Examinator: Ulla Blomqvist, ankn
Uppgift 2) Datum: 23 okt TENTAMEN I MATEMATIK OCH MATEMATISK STATISTIK, kurskod 6H3000
Datum: okt TENTAMEN I MATEMATIK OCH MATEMATISK STATISTIK, kurskod 6H Moment: TEN ( Matematisk Statistik ) Lärare: Armin Halilovic Skrivtid: 8:5-:5 Införda beteckningar skall förklaras och definieras. Resonemang
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Tentamen i matematisk statistik för BI2 den 16 januari 2009
Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är
7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR
7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR Några sannolikhetsfördelningar förekommer ofta i tillämpade problem. Eftersomdeförekommeroftahardefåttspeciellanamn. Idettakapitelskallvi studera två
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
8. NÅGRA SPECIELLA KONTINUERLIGA SANNOLIKHETSFÖRDELNINGAR
8. NÅGRA SPECIELLA KONTINUERLIGA SANNOLIKHETSFÖRDELNINGAR 8.1 Normalfördelningen Den kanske viktigaste och mest kända sannolikhetsfördelning är den s k normalfördelningen. Den har en mycket stor betydelse
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II
Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs
Stokastiska processer
Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta
Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik
Sida 1 Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik 3.7, 3.11 Ympning används för att få en planta att växa på ett rotsystem tillhörande en annan växt. Elementarsannolikheterna
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning
Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL
Avd. Matematisk statistik TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 7907416, e-postadress: gunnare@math.kth.se
Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.
Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 9 Johan Lindström 16 oktober 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F9 1/26 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik
Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
Markovkedjor. Patrik Zetterberg. 8 januari 2013
Markovkedjor Patrik Zetterberg 8 januari 2013 1 / 15 Markovkedjor En markovkedja är en stokastisk process där både processen och tiden antas diskreta. Variabeln som undersöks kan både vara numerisk (diskreta)
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
SF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.
Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a
Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,
1 Föreläsning V; Kontinuerlig förd.
Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
SF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0
Övningstentamen Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet de att Bill träffar tavlan med sannolikheten.7
Tentamen i Livförsäkringsmatematik I, 22 mars 2006
STOCKHOLMS UNIVERSITET MS 2070 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, GA 22 mars 2006 Lösningar Tentamen i Livförsäkringsmatematik I, 22 mars 2006 Uppgift 1 a) Eftersom T x är likformigt
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen