Tentamen i matematisk statistik, TAMS15/TEN (4h)
|
|
- Karl Vikström
- för 5 år sedan
- Visningar:
Transkript
1 LINKÖPINGS UNIVERSITET Kurskod: TAMS1 Matematiska institutionen Provkod: TEN1 Johan Thim Datum: Institution: MAI Tentamen i matematisk statistik, TAMS1/TEN (4h Hjälpmedel är: miniräknare med tömda minnen och formelsamling Formel- och tabellsamling i matematisk statistik TAMS6 (Martin Singull och/eller formelsamling i matematisk statistik utgiven av matematiska institutionen. Inga anteckningar i formelsamlingarna är tillåtna. Varje uppgift är värd 6 poäng. För godkänd tentamen räcker 1 poäng. För betyg 4/ räcker 20 respektive 28 poäng (således tillräckliga krav. Noggrann motivering krävs där alla viktiga detaljer skall motiveras. Approximationer är tillåtna om dessa är rimliga och motiveras noggrant. 1. Låt A och B vara två händelser så att P (A B = P (A B = 0.3 och P (A B = 0.8. (a Är händelserna A och B oberoende? Vad gäller händelserna A B och A B (är de oberoende? Motivera noggrant. (b Amanda har två bilar och en cykel. Med dessa färdmedel är sannolikheten 0.8, 0.9 respektive 0.3, att Amanda kommer i tid till jobbet. Antag att Amanda väljer färdmedel varje morgon med sannolikheterna 0.4, 0.4 respektive 0.2. Vad är sannolikheten att hon kommer fram i tid? Om Amanda kom fram i tid, vad är sannolikheten att hon cyklade? (c Snickaren Stefan har en låda med 8 skruvar och 12 spikar. Stefan ska bomma igen ett fönster och behöver fästa en playwoodskiva i minst fyra punkter. Han plockar på måfå enheter från lådan. Vad är sannolikheten att han kan fästa skivan ordentligt med dessa fem enheter om han bara har en skruvmejsel med sig? 2. Låt X vara en stokastisk variabel med sannolikhetsfunktionen p X given i figuren nedan. p X (k k (a Vad blir P (X > 0, E(X samt E(cos(X? (b Låt Y vara en diskret stokastisk variabel så att p Y (k 0 endast då k = 0, 1, 2. Om vi vet att X och Y är oberoende, att E(Y = 6/, samt att kovariansen mellan Y och X + Y är 14/2, bestäm vad Y har för sannolikhetsfunktion. (4p Vänd!
2 3. (a Professorerna A och B tävlar om vem som har flest hyllmeter med fakta. Det visar sig att A N(42.1, 3 (V (A = 3 och B N(41.8, 6 (V (B = 6; enhet meter. Vad är sannolikheten att B vinner? (b Låt X 1, X 2 och X 3 alla ha fördelningen N(1, 2 (variansen är 4. Antag att variablerna är oberoende och finn P (X 1 2X 2 + 3X 3 > 3. (c Låt X N(µ, σ (V (X = σ 2. Bestäm det största talet b så att P (X µ > 2 < 0.02 om σ < b. 4. Vid cykelloppet vätternrundan finns massagetält uppställda vid depåer. Ankomsterna till tälten kan beskrivas av en Poissonprocess med intensiteten 14 cyklister per timme. Antag att ett tält har fyra britsar och 3 massörer. Massörerna arbetar hela tiden och deras behandlingstid för en cyklist är exponentialfördelad med väntevärde 12 minuter. Cyklister som ankommer slår sig ned på första lediga brits. Om cyklisten ser att alla britsar är upptagna fortsätter cyklisten till nästa tält. Antag att vi kommit en bit in i loppet (så att jämvikt har uppnåtts. (a Hitta en lämplig kömodell och beräkna jämviktsfördelningen. (b Bestäm det förväntade antalet cyklister i tältet samt sannolikheten att en cyklist som kommer till tältet får lov att fortsätta till nästa tält?. (a Låt X 1 Bin(n 1, p och X 2 Bin(n 2, p vara oberoende. Hitta fördelningen för summan Y = X 1 + X 2. (b Om Y 1, Y 2,..., Y 40 har samma fördelning som Y i föregående deluppgift, där n 1 = n 2 = och p = 0.2, finn sannolikheten P (Y 1 + Y Y 40 > 99. ( (a Låt P = vara övergångsmatrisen för en tidshomogen Markovkedja. Visa att denna kedja har en entydigt bestämd stationär fördelning, men saknar en asymptotisk fördelning. ( (b Låt P = vara övergångsmatrisen för en annan tidshomogen Markovkedja. Finn 0 1 alla stationära fördelningar och finn den asymptotiska fördelningen om den existerar. Motbevisa annars existens.
3 Lösningsskisser 1. (a Ur till exempel ett Venndiagram följer det att P (A B = P (A B P (A B P (A B = = 0.2. Om A och B är oberoende så är P (A B = P (AP (B. Vi räknar ut sannolikheterna för A och B: P (A = P (A B P (A B = = 0. och P (B = P (A B P (A B = = 0.. Härur ser vi att P (A B P (AP (B, och händelserna är således beroende. Vidare, P ( (A B (A B = P ( = 0 men P (A B P (A B = Även dessa händelser är beroende. (b Enligt lagen om total sannolikhet ges sannolikheten att Amanda kommer i tid av = Alltså 74% chans. Låt T vara händelsen att Amanda kommer fram i tid och C händelsen att Amanda cyklar. Då är P (T = 0.74 och vi söker P (C T. Enligt Bayes sats erhåller vi P (C T = P (T CP (C P (T = = (c Situationen är hypergeometriskt fördelad om vi låter X vara antalet skruvar vi får när vi plockar upp fem element. Vi söker då P (X 4 = P (X = 4 + P (X =. Det finns alltså två gynnsamma utfall: fyra skruvar och en spik eller fem skruvar. Dessa händelser är disjunkta, så vi räknar ut sannolikheterna och summerar: ( ( ( ( ( ( 20 0 = Svar: (a Båda paren är beroende. (b 74% och 8.1% (c (a Direkt ur figuren finner vi att P (X > 0 = = 0.. Vidare, E(X = = 0.1 och E(cos X = 0.2 cos cos cos cos cos 2 = = 0. (b Eftersom X och Y är oberoende så gäller det att C(Y, X + Y = C(Y, X + C(Y, Y = 0 + V (Y, så vi har från uppgift erhållit att V (Y = 14/2. Vidare är p Y (k 0 endast då k = 0, 1, 2, så vi låter p Y (0 = p 0 p Y (1 = p 1 p Y (2 = 1 p 0 p 1.
4 Nu, E(Y = 0 p p (1 p 0 p 1 = 2 2p 0 p 1. Vi vet enligt uppgift att E(Y = 6/, så 2 2p 0 p 1 = 6/. Vidare, E(Y 2 = 0 p p (1 p 0 p 1 = 2(2 2p 0 p 1 p 1 = 12/ p 1, och enligt Steiners sats så är 14 2 = V (Y = E(Y 2 E(Y 2 = 12 p 1 ( 6 2. Alltså är p 1 = 12/ 36/2 14/2 = 10/2 = 2/. Vi utnyttjar villkoret på E(Y ovan och erhåller även att p 0 = 1/. Svar: (a 0., 0.1, och 0. (b p Y (0 = 1/, p Y (1 = p Y (2 = 2/. 3. (a Variablerna är oberoende och normalfördelade, så Vi beräknar: Z = B A N ( , = N( 0.3, 3. ( P (Z > 0 = 1 P (Z 0 = 1 Φ (b Linjärkombination av oberoende normalfördelade variabler, så Alltså blir Z = X 1 2X 2 + 3X 3 N( , 4 + ( = N(2, 6. P (Z > 3 = 1 P (Z 3 = 1 Φ((3 2/ 6 = 1 Φ( = (c Vi ställer upp kravet: ( X µ P (X µ > 2 = P σ > 2 = 1 Φ(2/σ < σ Alltså måste Φ(2/σ > Ur tabell finner vi att 2/σ = 1.96 ger Φ(2/σ = Detta ger i sin tur att σ < 2/1.96 = 1.02 (Φ är växande. Svar: (a 0.46 (b 0.4 (c b = En lämplig modell är en M/M/3/4-kö, där vi representerar antalet upptagna britsar med tillståndet för den stokastiska processen. Vi har alltså fem tillstånd (noll till alla fyra britsarna upptagna. De tre massörerna är våra tre betjäningsställen. µ 2µ 3µ 3µ Enligt informationen som är given är = 14 (per timme och µ 1 = 12 (minuter, så µ = 1/0.2 = (per timme.
5 (a Jämviktsfördelningen fås ur känd formel för födelse-dödsprocess: n = 0 1 n 1 µ 1 µ 2 µ n 0, n = 1, 2, 3, 4. (* Vi måste bestämma 0, och gör detta genom att utnyttja att det är en sannolikhetsvektor vi arbetar med, så 4 ( k = µ + 2 2µ µ µ 4 = = (1 + a + a2 2 + a3 6 + a4 18 k=0 0 = , där a = /µ = 14/ = 2.8. Nu kan vi med hjälp av (* ovan räkna ut alla sannolikheterna: 0 = = = = = (b Direkt ur definitionen på väntevärde erhåller vi E(N = 4 k k = = k=0 Sannolikheten att en cyklist får vända i tältöppningen är sannolikheten att processen befinner sig i tillstånd fyra, alltså 4 = Svar: (a M/M/3/4, se ovan. (b E(N = 2.28 och 23% chans att tältet är fullt.. (a Enklast är att betrakta de sannolikhetsgenererande funktionerna. Från formelsamlingen ser vi att G X1 (s = (1 + p(s 1 n 1 och G X2 (s = (1 + p(s 1 n 2. Eftersom X 1 och X 2 är oberoende så har Y = X 1 + X 2 den sannolikhetsgenererande funktionen G Y (s = G X1 (sg X2 (s = (1 + p(s 1 n 1 (1 + p(s 1 n 2 = (1 + p(s 1 n 1+n 2, och på grund av entydighet innebär det att Y Bin(n 1 + n 2, p. (b Enligt centrala gränsvärdessatsen så är appr. Y 1 + Y Y 40 N( , = N(100, 8.66, av vilket det följer att ( P (Y 1 + +Y 40 > 99 = 1 P (Y 1 + +Y Φ = Φ(0.12 = Svar: (a Y Bin(n 1 + n 2, p (b 4.8% 6. (a Låt ingångssannolikheterna ges av vektorn = ( 0 1, där = 1. Vi ser att = ( 1 0, och att 2 = ( 0 1.
6 Det visar sig alltså att n = ( 0 1 om n är jämnt, och att n = ( 1 0, om n är udda. Det saknas alltså ett gränsvärde då n går mot oändligheten! Sekvensen alternerar hela tiden mellan två möjligheter. Asymptotiskt fördelning kan alltså inte existera. Stationära fördelningar finner vi från ekvationen (P I = 0 med bivillkoret att är en stokastisk vektor. Vi ställer upp ekvationssystemet: = = 0 0 = 1 = = 1 Alltså endast 0 = 1 = 0. är en stationär vektor. Entydigt bestämd. (b Låt ingångssannolikheterna ges av vektorn = ( 0 Det visar sig alltså att ( 0 1 ( 0 1 = ( 0 1. n = ( 0 1 för alla n. 1, där = 1. Vi ser att Men detta är beroende av ingångssannolikheter! Beroende på sannolikheterna när vi startar så stannar vi direkt i dessa. Asymptotisk fördelning kan alltså inte heller här existera. Men vi har i princip redan svarat på frågan kring stationära fördelningar: varje sannolikhetsvektor vi startar i bevaras i all oändlighet, så alla sannolikhetsvektorer är stationära. Vi kan även se det från ekvationssystemet = P : 0 = 0 1 = = 1 Alltså fungerar alla sannolikhetsvektorer. Svar: Se ovan.
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merTentamen i matematisk statistik (92MA31, STN2) kl 08 12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Läs mere x/1000 för x 0 0 annars
VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik
Läs merTAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
Läs merTENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Läs merTENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Läs mer** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Läs merP =
Avd. Matematisk statistik TENTAMEN I SF297 (f d 5B157) TILLFÖRLITLIGHETSTEORI LÖRDAGEN DEN 2 OKTOBER 21 KL 1. 18.. Examinator: Gunnar Englund, tel. 79716, e-postadress: gunnare@math.kth.se Tillåtna hjälpmedel:
Läs merTENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna
Läs merb) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p)
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 9 JUNI 05 KL 4.00 9.00. Examinator: Boualem Djehiche tel. 790 78 75. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Läs mer0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merUppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)
Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Läs merb) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Läs merLINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen TENTA 9MA31, 9MA37, 93MA31, 93MA37 / STN 9GMA5 / STN 1 1 juni 16, klockan 8.-1. Jour: Jörg-Uwe Löbus Tel: 79-687) Tillåtna hjälpmedel är en räknare, formelsamling
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merKurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1907, SF1908 samt SF1913 SANNOLIKHETSTEORI OCH STATISTIK, ONS- DAGEN DEN 9:E JANUARI 2013 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs mercx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 1:A JUNI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel: miniräknare,
Läs merUppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända
Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merJörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Läs meraug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13
Tentamen TEN, HF, aug 7 Matematisk statistik Kurskod HF Skrivtid: :-: Lärare och examinator : Armin Halilovic Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken
Läs merStokastiska processer och simulering I 24 maj
STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj 2016 9 14
Läs merFACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator
Läs merTENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,
Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och
Läs mer(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790
Läs merKunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna
Läs merMarkovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 1 Markovprocesser Johan Westerborn Markovprocesser (1) Föreläsning 1 Föreläsningsplan 1 Kursinformation 2 Stokastiska processer 3 Betingade
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:
Läs merMatematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Läs merKap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Läs merFormel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merb) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p)
Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 13:E AUGUSTI 2018 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlenko, 08-790 84 66 Examinator
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs mer(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för
Läs merMarkovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
Läs merMarkovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
Läs merLycka till!
Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och
Läs merFACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för
Läs mera) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merFöreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
Läs merb) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p)
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK FREDAGEN DEN 8 MAJ 010 KL 14.00 19.00. Eaminator: Gunnar Englund, tel. 79074 16. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merfaderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 2015 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Läs merTENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL
Avd. Matematisk statistik TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 7907416, e-postadress: gunnare@math.kth.se
Läs merUppgift 1. f(x) = 2x om 0 x 1
Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merMatematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 9 Johan Lindström 16 oktober 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F9 1/26 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03
Läs merTentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 017 Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 017-10-0 kl. 08:30-1:30 Examinator:
Läs merTENTAMEN Datum: 14 feb 2011
TENTAMEN Datum: 14 feb 011 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF1001 TEN 1 (Matematisk statistik ) Ten1 i kursen HF1001 ( Tidigare kn 6H301), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 13:15-17:15
Läs merFö relä sning 2, Kö system 2015
Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
Läs merTAMS17/TEN1 STATISTISK TEORI FK TENTAMEN ONSDAG 10/ KL
TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN ONSDAG 1/1 18 KL 8.-13.. Examinator och jourhavande lärare: Torkel Erhardsson, tel. 8 14 78. Tillåtna hjälpmedel: Formelsamling i matematisk statistik utgiven av
Läs merTentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merb) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)
Avd. Matematisk statistik TENTAMEN I SF1920 och SF1921 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E JUNI 2018 KL 14.00 19.00. Examinator: Björn-Olof Skytt, 08 790 86 49. Tillåtna hjälpmedel: Formel-
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna
Läs merMatematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Läs merDel I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1
Avd. Matematisk statistik TENTAMEN I SF1920/SF1921 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 11 MARS 2019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merMatematisk statistik, LMA 200, för DAI och EI den 25 aug 2011
Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:
Läs merÖvning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.
Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
Läs merBestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-
Läs merBetingning och LOTS/LOTV
Betingning och LOTS/LOTV Johan Thim (johan.thim@liu.se 4 december 018 Det uppstod lite problem kring ett par uppgifter som hanterade betingning. Jag tror problemen är av lite olika karaktär, men det jag
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merLufttorkat trä Ugnstorkat trä
Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:
Läs merMatematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs mer0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Läs merUppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B
TENTAMEN I MATEMATISK STATISTIK Datum: 3 juni 8 Ten i ursen HF3, 6H3, 6L3 MATEMATIK OH MATEMATISK STATISTIK, Ten i ursen HF ( Tidigare n 6H3), KÖTEORI OH MATEMATISK STATISTIK, Ten i ursen HF4, (Tidigare
Läs merFaderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Läs merDel I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...
Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för
Läs mer1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Läs merFöreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Läs merFöreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
Läs merTentamen i FMS180/MASC03 Markovprocesser
Matematisk statistik Matematikcentrum Lunds Universitet Tentamen i FMS80/MASC03 Markovprocesser 009-05-5 Lösningsförslag. Följande är en möjlighet. 6 5 3 4 Här är tillstånden, och 3 transienta, tillstånd
Läs merTentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 5:E APRIL 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merUppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Läs merVåra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Läs merDel I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...
Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,
Läs merb) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)
Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merTAMS79: Föreläsning 6. Normalfördelning
TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Niklas
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Läs mer